Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neuro Oncol ; 25(11): 2058-2071, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37148198

RESUMO

BACKGROUND: Glioblastoma (GB) is incurable at present without established treatment options for recurrent disease. In this phase I first-in-human clinical trial we investigated safety and feasibility of adoptive transfer of clonal chimeric antigen receptor (CAR)-NK cells (NK-92/5.28.z) targeting HER2, which is expressed at elevated levels by a subset of glioblastomas. METHODS: Nine patients with recurrent HER2-positive GB were treated with single doses of 1 × 107, 3 × 107, or 1 × 108 irradiated CAR-NK cells injected into the margins of the surgical cavity during relapse surgery. Imaging at baseline and follow-up, peripheral blood lymphocyte phenotyping and analyses of the immune architecture by multiplex immunohistochemistry and spatial digital profiling were performed. RESULTS: There were no dose-limiting toxicities, and none of the patients developed a cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Five patients showed stable disease after relapse surgery and CAR-NK injection that lasted 7 to 37 weeks. Four patients had progressive disease. Pseudoprogression was found at injection sites in 2 patients, suggestive of a treatment-induced immune response. For all patients, median progression-free survival was 7 weeks, and median overall survival was 31 weeks. Furthermore, the level of CD8+ T-cell infiltration in recurrent tumor tissue prior to CAR-NK cell injection positively correlated with time to progression. CONCLUSIONS: Intracranial injection of HER2-targeted CAR-NK cells is feasible and safe in patients with recurrent GB. 1 × 108 NK-92/5.28.z cells was determined as the maximum feasible dose for a subsequent expansion cohort with repetitive local injections of CAR-NK cells.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Células Matadoras Naturais , Recidiva , Imunoterapia Adotiva/métodos
2.
J Neurooncol ; 159(2): 243-259, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864412

RESUMO

PURPOSE: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy. METHODS: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected. RESULTS: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI. CONCLUSION: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary.


Assuntos
Neoplasias Encefálicas , Terapia de Alvo Molecular , Humanos , Mutação , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas B-raf , Estudos Retrospectivos
3.
Trials ; 23(1): 57, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045869

RESUMO

BACKGROUND: Glioblastoma is the most frequent and malignant primary brain tumor. Even in the subgroup with O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and favorable response to first-line therapy, survival after relapse is short (12 months). Standard therapy for recurrent MGMT-methylated glioblastoma is not standardized and may consist of re-resection, re-irradiation, and chemotherapy with temozolomide (TMZ), lomustine (CCNU), or a combination thereof. Preclinical results show that meclofenamate (MFA), originally developed as a nonsteroidal anti-inflammatory drug (NSAID) and registered in the USA, sensitizes glioblastoma cells to temozolomide-induced toxicity via inhibition of gap junction-mediated intercellular cytosolic traffic and demolishment of tumor microtube (TM)-based network morphology. METHODS: In this study, combined MFA/TMZ therapy will be administered (orally) in patients with first relapse of MGMT-methylated glioblastoma. A phase I component (6-12 patients, 2 dose levels of MFA + standard dose TMZ) evaluates safety and feasibility and determines the dose for the randomized phase II component (2 × 30 patients) with progression-free survival as the primary endpoint. DISCUSSION: This study is set up to assess toxicity and first indications of efficacy of MFA repurposed in the setting of a very difficult-to-treat recurrent tumor. The trial is a logical next step after the identification of the role of resistance-providing TMs in glioblastoma, and results will be crucial for further trials targeting TMs. In case of favorable results, MFA may constitute the first clinically feasible TM-targeted drug and therefore might bridge the idea of a TM-targeted therapeutic approach from basic insights into clinical reality. TRIAL REGISTRATION: EudraCT 2021-000708-39 . Registered on 08 February 2021.


Assuntos
Glioblastoma , Antineoplásicos Alquilantes/efeitos adversos , Metilases de Modificação do DNA/uso terapêutico , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Ácido Meclofenâmico/uso terapêutico , Recidiva Local de Neoplasia , Temozolomida/efeitos adversos , Proteínas Supressoras de Tumor/uso terapêutico
4.
Cancers (Basel) ; 13(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34298790

RESUMO

Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.

5.
J Clin Med ; 10(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801401

RESUMO

Local anesthetics are commonly administered by nuchal infiltration to provide a temporary interscalene brachial plexus block (ISB) in a surgical setting. Although less commonly reported, local anesthetics can induce central nervous system toxicity. In this case study, we present three patients with acute central nervous system toxicity induced by local anesthetics applied during ISB with emphasis on neurological symptoms, key neuroradiological findings and functional outcome. Medical history, clinical and imaging findings, and outcome of three patients with local anesthetic-induced toxic left hemisphere syndrome during left ISB were analyzed. All patients were admitted to our neurological intensive care unit between November 2016 and September 2019. All three patients presented in poor clinical condition with impaired consciousness and left hemisphere syndrome. Electroencephalography revealed slow wave activity in the affected hemisphere of all patients. Seizure activity with progression to status epilepticus was observed in one patient. In two out of three patients, cortical FLAIR hyperintensities and restricted diffusion in the territory of the left internal carotid artery were observed in magnetic resonance imaging. Assessment of neurological severity scores revealed spontaneous partial reversibility of neurological symptoms. Local anesthetic-induced CNS toxicity during ISB can lead to severe neurological impairment and anatomically variable cerebral lesions.

6.
Clin Cancer Res ; 27(10): 2723-2733, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33622704

RESUMO

PURPOSE: BAY1436032, an inhibitor of mutant isocitrate dehydrogenase 1 (mIDH1), was active against multiple IDH1-R132X solid tumors in preclinical models. This first-in-human study was designed to determine the safety and pharmacokinetics of BAY1436032, and to evaluate its potential pharmacodynamics and antitumor effects. PATIENTS AND METHODS: The study comprised of dose escalation and dose expansion cohorts. BAY1436032 tablets were orally administered twice daily on a continuous basis in subjects with mIDH1 solid tumors. RESULTS: In dose escalation, 29 subjects with various tumor types were administered BAY1436032 across five doses (150-1,500 mg twice daily). BAY1432032 exhibited a relatively short half-life. Most evaluable subjects experienced target inhibition as indicated by a median maximal reduction of plasma R-2-hydroxyglutarate levels of 76%. BAY1436032 was well tolerated and an MTD was not identified. A dose of 1,500 mg twice daily was selected for dose expansion, where 52 subjects were treated in cohorts representing four different tumor types [lower grade glioma (LGG), glioblastoma, intrahepatic cholangiocarcinoma, and a basket cohort of other tumor types]. The best clinical outcomes were in subjects with LGG (n = 35), with an objective response rate of 11% (one complete response and three partial responses) and stable disease in 43%. As of August 2020, four of these subjects were in treatment for >2 years and still ongoing. Objective responses were observed only in LGG. CONCLUSIONS: BAY1436032 was well tolerated and showed evidence of target inhibition and durable objective responses in a small subset of subjects with LGG.


Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Compostos de Anilina/administração & dosagem , Compostos de Anilina/efeitos adversos , Compostos de Anilina/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Benzimidazóis/administração & dosagem , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacocinética , Biomarcadores Tumorais , Análise Mutacional de DNA , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/mortalidade
7.
Oncology ; 99(4): 215-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33472203

RESUMO

INTRODUCTION: Gliomatosis cerebri (GC) is defined by diffuse, widespread glial tumor growth affecting three or more cerebral lobes. Previous studies in gliomas found no distinct histological or molecular GC subtype, yet the presence of GC is associated with worse median overall survival (OS). Here, we explored whether differing therapeutic strategies in first-line treatment could account for this. METHODS: From our University Cancer Center database, 47 patients with histological diagnosis of WHO grade II or III glioma and GC imaging pattern were identified. GC criteria were confirmed by independent review. Patients with WHO grade II or III glioma with non-GC pattern served as control cohort (n = 343). RESULTS: Within the GC patient cohort, lower WHO grade, mutated isocitrate dehydrogenase 1 (IDH1) status, and absence of contrast enhancement were associated with better OS. Compared to the control cohort, patients with GC had significantly shorter OS independent of histological diagnosis or IDH1 mutation status. Patients with GC preferentially received chemotherapy alone (62 vs. 18%), and less frequently radiochemotherapy (21 vs. 27%). OS was significantly shorter in the GC cohort compared to the non-GC cohort both for chemotherapy (3.9 vs. 7.6 years, p = 0.0085) and for combined radiochemotherapy (1.1 vs. 8.4 years, p < 0.0001). However, when only patients who received biopsy plus chemotherapy were analyzed, the differences lost statistical significance (3.5 vs. 6.6 years, p = 0.196). CONCLUSION: We found major differences in the selection of first-line therapies of GC versus non-GC patients. Our results suggest that these differences may partly account for the worse prognosis of GC patients.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Glioma/tratamento farmacológico , Glioma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Estudos de Coortes , Feminino , Glioma/patologia , Glioma/radioterapia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Prognóstico , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
8.
Cancers (Basel) ; 12(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138036

RESUMO

BACKGROUND: BAY1436032 is a fluorine-containing inhibitor of the R132X-mutant isocitrate dehydrogenase (mIDH1). It inhibits the mIDH1-mediated production of 2-hydroxyglutarate (2-HG) in glioma cells. We investigated brain penetration of BAY1436032 and its effects using 1H/19F-Magnetic Resonance Spectroscopy (MRS). METHODS: 19F-Nuclear Magnetic Resonance (NMR) Spectroscopy was conducted on serum samples from patients treated with BAY1436032 (NCT02746081 trial) in order to analyze 19F spectroscopic signal patterns and concentration-time dynamics of protein-bound inhibitor to facilitate their identification in vivo MRS experiments. Hereafter, 30 mice were implanted with three glioma cell lines (LNT-229, LNT-229 IDH1-R132H, GL261). Mice bearing the IDH-mutated glioma cells received 5 days of treatment with BAY1436032 between baseline and follow-up 1H/19F-MRS scan. All other animals underwent a single scan after BAY1436032 administration. Mouse brains were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: Evaluation of 1H-MRS data showed a decrease in 2-HG/total creatinine (tCr) ratios from the baseline to post-treatment scans in the mIDH1 murine model. Whole brain concentration of BAY1436032, as determined by 19F-MRS, was similar to total brain tissue concentration determined by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS), with a signal loss due to protein binding. Intratumoral drug concentration, as determined by LC-MS/MS, was not statistically different in models with or without R132X-mutant IDH1 expression. CONCLUSIONS: Non-invasive monitoring of mIDH1 inhibition by BAY1436032 in mIDH1 gliomas is feasible.

9.
Int J Mol Med ; 45(5): 1385-1396, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323755

RESUMO

Adenosine monophosphate (AMP)­activated protein kinase (AMPK) is a major cellular energy sensor that is activated by an increase in the AMP/adenosine triphosphate (ATP) ratio. This causes the initiation of adaptive cellular programs, leading to the inhibition of anabolic pathways and increasing ATP synthesis. AMPK indirectly inhibits mammalian target of rapamycin (mTOR) complex 1 (mTORC1), a serine/threonine kinase and central regulator of cell growth and metabolism, which integrates various growth inhibitory signals, such as the depletion of glucose, amino acids, ATP and oxygen. While neuroprotective approaches by definition focus on neurons, that are more sensitive under cell stress conditions, astrocytes play an important role in the cerebral energy homeostasis during ischemia. Therefore, the protection of astrocytic cells or other glial cells may contribute to the preservation of neuronal integrity and function. In the present study, it was thus hypothesized that a preventive induction of energy deprivation­activated signaling pathways via AMPK may protect astrocytes from hypoxia and glucose deprivation. Hypoxia­induced cell death was measured in a paradigm of hypoxia and partial glucose deprivation in vitro in the immortalized human astrocytic cell line SVG. Both the glycolysis inhibitor 2­deoxy­d­glucose (2DG) and the AMPK activator A­769662 induced the phosphorylation of AMPK, resulting in mTORC1 inhibition, as evidenced by a decrease in the phosphorylation of the target ribosomal protein S6 (RPS6). Treatment with both 2DG and A­769662 also decreased glucose consumption and lactate production. Furthermore, A­769662, but not 2DG induced an increase in oxygen consumption, possibly indicating a more efficient glucose utilization through oxidative phosphorylation. Hypoxia­induced cell death was profoundly reduced by treatment with 2DG or A­769662. On the whole, the findings of the present study demonstrate, that AMPK activation via 2DG or A­769662 protects astrocytes under hypoxic and glucose­depleted conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Substâncias Protetoras/farmacologia , Astrócitos/metabolismo , Compostos de Bifenilo , Desoxiglucose/farmacologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiofenos/farmacologia
10.
Front Immunol ; 10: 2683, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798595

RESUMO

Glioblastoma (GB) is the most common and aggressive primary brain tumor in adults and currently incurable. Despite multimodal treatment regimens, median survival in unselected patient cohorts is <1 year, and recurrence remains almost inevitable. Escape from immune surveillance is thought to contribute to the development and progression of GB. While GB tumors are frequently infiltrated by natural killer (NK) cells, these are actively suppressed by the GB cells and the GB tumor microenvironment. Nevertheless, ex vivo activation with cytokines can restore cytolytic activity of NK cells against GB, indicating that NK cells have potential for adoptive immunotherapy of GB if potent cytotoxicity can be maintained in vivo. NK cells contribute to cancer immune surveillance not only by their direct natural cytotoxicity which is triggered rapidly upon stimulation through germline-encoded cell surface receptors, but also by modulating T-cell mediated antitumor immune responses through maintaining the quality of dendritic cells and enhancing the presentation of tumor antigens. Furthermore, similar to T cells, specific recognition and elimination of cancer cells by NK cells can be markedly enhanced through expression of chimeric antigen receptors (CARs), which provides an opportunity to generate NK-cell therapeutics of defined specificity for cancer immunotherapy. Here, we discuss effects of the GB tumor microenvironment on NK-cell functionality, summarize early treatment attempts with ex vivo activated NK cells, and describe relevant CAR target antigens validated with CAR-T cells. We then outline preclinical approaches that employ CAR-NK cells for GB immunotherapy, and give an overview on the ongoing clinical development of ErbB2 (HER2)-specific CAR-NK cells currently applied in a phase I clinical trial in glioblastoma patients.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Receptores de Antígenos Quiméricos/uso terapêutico , Animais , Humanos , Células Matadoras Naturais/imunologia , Receptores de Antígenos Quiméricos/imunologia
11.
J Biol Chem ; 294(9): 3037-3050, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578297

RESUMO

The peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a master regulator of mitochondrial biogenesis and controls metabolism by coordinating transcriptional events. Here, we interrogated whether PGC-1α is involved in tumor growth and the metabolic flexibility of glioblastoma cells. PGC-1α was expressed in a subset of established glioma cell lines and primary glioblastoma cell cultures. Furthermore, a higher PGC-1α expression was associated with an adverse outcome in the TCGA glioblastoma dataset. Suppression of PGC-1α expression by shRNA in the PGC-1α-positive U343MG glioblastoma line suppressed mitochondrial gene expression, reduced mitochondrial membrane potential, and diminished oxygen as well as glucose consumption, and lactate production. Compatible with the known PGC-1α functions in reactive oxygen species (ROS) metabolism, glioblastoma cells deficient in PGC-1α displayed ROS accumulation, had reduced RNA levels of proteins involved in ROS detoxification, and were more susceptible to death induction by H2O2 compared with control cells. PGC-1αsh cells also had impaired proliferation and migration rates in vitro and displayed less stem cell characteristics. Complementary effects were observed in PGC-1α-low LNT-229 cells engineered to overexpress PGC-1α. In an in vivo xenograft experiment, tumors formed by U343MG PGC-1αsh glioblastoma cells grew much slower than control tumors and were less invasive. Interestingly, the PGC-1α knockdown conferred protection against hypoxia-induced cell death, probably as a result of less active anabolic pathways, and this effect was associated with reduced epidermal growth factor expression and mammalian target of rapamycin signaling. In summary, PGC-1α modifies the neoplastic phenotype of glioblastoma cells toward more aggressive behavior and therefore makes PGC-1α a potential target for anti-glioblastoma therapies.


Assuntos
Glioblastoma/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fenótipo , Linhagem Celular Tumoral , Metabolismo Energético/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Homeostase/genética , Humanos , Mitocôndrias/genética , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Hipóxia Tumoral/genética
12.
J Clin Med ; 7(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110924

RESUMO

Ventriculoperitoneal shunts equipped with a reservoir and a valve to manually switch off the shunt function can be used for intraventricular injections of therapeutics in patients suffering from a communicating hydrocephalus caused by leptomeningeal metastases. These shunt devices avoid the risk of injecting therapeutics through the distal leg of the shunt system into the intraperitoneal space, which may cause toxicity. Furthermore, regular intraventricular injections of chemotherapeutics help to maintain sufficient concentrations in the ventricular space. Therefore, ventriculoperitoneal shunts equipped with an on-off valve are a useful tool to reliably inject chemotherapeutics into the ventricles. In order to systematically assess feasibility, safety, and efficacy of this procedure, we performed a retrospective analysis of all patients with leptomeningeal metastases who had received a shunt system at our institution. In total, six adult patients had a ventriculoperitoneal shunt equipped with an on-off valve implanted. Out of these six patients, two patients subsequently received intraventricular injections of chemotherapeutics. The configuration of the valve setting and the intraventricular injections were easily feasible in the setting of a neuro-oncology department. The complication of a shunt leakage occurred in one patient following the first intraventricular injection. No extra-central nervous system (CNS) toxicities were observed. In summary, ventriculoperitoneal shunts with on-off valves are useful tools for reliable intraventricular administration of therapeutics.

13.
Nat Med ; 24(8): 1192-1203, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988124

RESUMO

The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.


Assuntos
Glutaratos/metabolismo , Imunidade , Linfócitos T/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/genética , Glioma/imunologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Mutação/genética , Fatores de Transcrição NFATC/metabolismo , Comunicação Parácrina , Poliaminas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
14.
J Neurochem ; 144(4): 421-430, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29178334

RESUMO

Although bevacizumab initially shows high response rates in gliomas and other tumours, therapy resistance usually develops later. Because anti-angiogenic agents are supposed to induce hypoxia, we asked whether rendering glioma cells independent of oxidative phosphorylation modulates their sensitivity against hypoxia and bevacizumab. LNT-229 glioma cells without functional mitochondria (rho0 ) and control (rho+ ) cells were generated. LNT-229 rho0 -cells displayed reduced expression of oxidative phosphorylation-related genes and diminished oxygen consumption. Conversely, glycolysis was up-regulated in these cells, as shown by increased lactate production and stronger expression of glucose transporter-1 and lactate dehydrogenase-A. However, hypoxia-induced cell death in vitro was nearly completely abolished in the LNT-229 rho0 -cells, these cells were more sensitive towards glucose restriction and the treatment with the glycolysis inhibitor 2-deoxy-D-glucose. In an orthotopic mouse xenograft experiment, bevacizumab induced hypoxia as reflected by elevated Hypoxia-inducible factor 1-alpha staining in both, rho+ - and rho0 -tumours. However, it prolonged survival only in the mice bearing rho+ -tumours (74 days vs. 105 days, p = 0.024 log-rank test) and had no effect on survival in mice carrying LNT-229 rho0 -tumours (75 days vs. 70 days, p = 0.52 log-rank test). Interestingly, inhibition of glycolysis in vivo with 2-deoxy-D-glucose re-established sensitivity of rho0 -tumours against bevacizumab (98 days vs. 80 days, p = 0.0001). In summary, ablation of oxidative phosphorylation in glioma cells leads to a more glycolytic and hypoxia-resistant phenotype and is sufficient to induce bevacizumab-refractory tumours. These results add to increasing evidence that a switch towards glycolysis is one mechanism how tumour cells may evade anti-angiogenic treatments and suggest anti-glycolytic strategies as promising approaches to overcome bevacizumab resistance.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antimetabólitos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxiglucose/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Ácido Láctico/metabolismo , Camundongos , Consumo de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Mol Sci ; 18(11)2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29156610

RESUMO

In patients with glioblastoma, antiangiogenic therapy with bevacizumab (BEV) has been shown to improve progression-free survival (PFS), but not overall survival (OS). Especially in patients with an unusual infiltrative phenotype as seen in multifocal glioblastoma, the use of BEV therapy is still more controversial. Therefore, we prepared a retrospective case series with 16 patients suffering from a multifocal glioblastoma treated with BEV. We compared these patients to a matched control cohort of 16 patients suffering from glioblastoma with a single lesion treated with BEV. The objective of this study was to evaluate whether the course of disease differs in glioblastoma patients with a multifocal disease pattern compared to those with a single lesion only. Patients were treated with BEV monotherapy or BEV in combination with irinotecan or lomustine (CCNU). Response rates and PFS were similar in both groups. There was a trend for an unfavorable OS in the patient group with multifocal glioblastoma, which was expected due to the generally worse prognosis of multifocal glioblastoma. We investigated whether BEV therapy affects the invasive growth pattern as measured by the appearance of new lesions on magnetic resonance imaging (MRI). Under BEV therapy, there was a trend for a lower frequency of new lesions both in multifocal and solitary glioblastoma. Based on these results, BEV therapy at relapse appears to be justified to no lesser extent in multifocal glioblastoma than in solitary glioblastoma.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Bevacizumab/administração & dosagem , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Intervalo Livre de Doença , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Irinotecano , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia
16.
Oncol Rep ; 38(6): 3291-3296, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039591

RESUMO

BRAF V600E mutations occur frequently in malignant melanoma, but are rare in most malignant glioma subtypes. Besides, more benign brain tumors such as ganglioglioma, dysembryoblastic neuroepithelial tumours and supratentorial pilocytic astrocytomas, only pleomorphic xanthoastrocytomas (50-78%) and epitheloid glioblastoma (50%) regularly exhibit BRAF mutations. In the present study, we report on three patients with recurrent malignant gliomas harbouring a BRAF V600E mutation. All patients presented with markedly disseminated leptomeningeal disease at recurrence and had progressed after radiotherapy and alkylating chemotherapy. Therefore, estimated life expectancy at recurrence was a few weeks. All three patients received dabrafenib as a single agent and all showed a complete or nearly complete response. Treatment is ongoing and patients are stable for 27 months, 7 months and 3 months, respectively. One patient showed a dramatic radiologic and clinical response after one week of treatment. We were able to generate an ex vivo tumor cell culture from CSF in one patient. Treatment of this cell culture with dabrafenib resulted in reduced cell density and inhibition of ERK phosphorylation in vitro. To date, this is the first series on adult patients with BRAF-mutated malignant glioma and leptomeningeal dissemination treated with dabrafenib monotherapy. All patients showed a dramatic response with one patient showing an ongoing response for more than two years.


Assuntos
Glioma/tratamento farmacológico , Imidazóis/administração & dosagem , Neoplasias Meníngeas/tratamento farmacológico , Oximas/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Glioma/radioterapia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/radioterapia , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Fosforilação
17.
Oncol Lett ; 14(1): 1141-1146, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693286

RESUMO

In previous trials, bevacizumab failed to prolong the overall survival time in newly diagnosed glioblastoma and at the first recurrence. Randomized clinical trials at the second or further recurrence following the failure of radiotherapy, temozolomide and lomustine, and retrospective analyses focusing on this specific cohort, are not yet available. A total of 62 patients with glioblastoma who received bevacizumab after the failure of standard care, including radiotherapy, temozolomide and lomustine, were retrospectively identified. Patient characteristics, previous treatment details, concomitant therapy, response based on the Response Assessment in Neuro-Oncology criteria, and progression-free survival (PFS) and overall survival (OS) times and rates were evaluated. Furthermore, the PFS and OS times and rates were analyzed for responders and non-responders. Of the patients, 54.8% (n=34) responded to treatment [complete response (CR) 3.2%, n=2; partial response (PR) 51.6%, n=32]. The median PFS time was 3.5 months and the median OS time was 7.5 months. The PFS rate at 6 months was 21.5% and the OS rate at 12 months was 11.5%. Responders (CR or PR) experienced a superior median PFS time compared with non-responders (i.e. stable or progressive disease; 5.4 vs. 1.9 months; P<0.0001) and a superior PFS rate at 6 months (34.9 vs. 7.1%; P<0.0001). The median OS time (8.6 vs. 6.4 months; P<0.0001) and OS rate at 12 months (21.3 vs. 0%; P<0.0001) were also superior in patients who exhibited a response to bevacizumab treatment. In conclusion, the objective response rate and the PFS and OS times and rates indicate that bevacizumab has activity in patients with glioblastoma following the failure of radiotherapy, temozolomide, and lomustine. A randomized trial comparing bevacizumab with best supportive care in these patients is advised.

18.
Int J Mol Sci ; 18(4)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28353668

RESUMO

Bevacizumab has been shown to improve progression-free survival and neurologic function, but failed to improve overall survival in newly diagnosed glioblastoma and at first recurrence. Nonetheless, bevacizumab is widely used in patients with recurrent glioma. However, its use in patients with gliomas showing a gliomatosis cerebri growth pattern is contentious. Due to the marked diffuse and infiltrative growth with less angiogenic tumor growth, it may appear questionable whether bevacizumab can have a therapeutic effect in those patients. However, the development of nodular, necrotic, and/or contrast-enhancing lesions in patients with a gliomatosis cerebri growth pattern is not uncommon and may indicate focal neo-angiogenesis. Therefore, control of growth of these lesions as well as control of edema and reduction of steroid use may be regarded as rationales for the use of bevacizumab in these patients. In this retrospective patient series, we report on 17 patients with primary brain tumors displaying a gliomatosis cerebri growth pattern (including seven glioblastomas, two anaplastic astrocytomas, one anaplastic oligodendroglioma, and seven diffuse astrocytomas). Patients have been treated with bevacizumab alone or in combination with lomustine or irinotecan. Seventeen matched patients treated with bevacizumab for gliomas with a classical growth pattern served as a control cohort. Response rate, progression-free survival, and overall survival were similar in both groups. Based on these results, anti-angiogenic therapy with bevacizumab should also be considered in patients suffering from gliomas with a mainly infiltrative phenotype.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/efeitos adversos , Bevacizumab/administração & dosagem , Bevacizumab/efeitos adversos , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Análise de Sobrevida
19.
Mol Cancer Ther ; 16(1): 156-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27777286

RESUMO

Malignant gliomas exhibit a high intrinsic resistance against stimuli triggering apoptotic cell death. HSF1 acts as transcription factor upstream of HSP70 and the HSP70 co-chaperone BAG3 that is overexpressed in glioblastoma. To specifically target this resistance mechanism, we applied the selective HSF1 inhibitor KRIBB11 and the HSP70/BAG3 interaction inhibitor YM-1 in combination with the pan-Bcl-2 inhibitor AT-101. Here, we demonstrate that lentiviral BAG3 silencing significantly enhances AT-101-induced cell death and reactivates effector caspase-mediated apoptosis in U251 glioma cells with high BAG3 expression, whereas these sensitizing effects were less pronounced in U343 cells expressing lower BAG3 levels. KRIBB11 decreased protein levels of HSP70, BAG3, and the antiapoptotic Bcl-2 protein Mcl-1, and both KRIBB11 and YM-1 elicited significantly increased mitochondrial dysfunction, effector caspase activity, and apoptotic cell death after combined treatment with AT-101 and ABT-737. Depletion of BAG3 also led to a pronounced loss of cell-matrix adhesion, FAK phosphorylation, and in vivo tumor growth in an orthotopic mouse glioma model. Furthermore, it reduced the plating efficiency of U251 cells in three-dimensional clonogenic assays and limited clonogenic survival after short-term treatment with AT-101. Collectively, our data suggest that the HSF1/HSP70/BAG3 pathway plays a pivotal role for overexpression of prosurvival Bcl-2 proteins and cell death resistance of glioma. They also support the hypothesis that interference with BAG3 function is an effective novel approach to prime glioma cells to anoikis. Mol Cancer Ther; 16(1); 156-68. ©2016 AACR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Glioma/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Mimetismo Molecular , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais , Compostos de Bifenilo/farmacologia , Adesão Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/patologia , Gossipol/análogos & derivados , Gossipol/farmacologia , Fatores de Transcrição de Choque Térmico , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , NF-kappa B/metabolismo , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , Sulfonamidas/farmacologia , Survivina , Proteína bcl-X/metabolismo
20.
PLoS One ; 11(6): e0155315, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27253224

RESUMO

Leptomeningeal dissemination of a primary brain tumor is a condition which is challenging to treat, as it often occurs in rather late disease stages in highly pretreated patients. Its prognosis is dismal and there is still no accepted standard of care. We report here a good clinical effect with a partial response in three out of nine patients and a stable disease with improvement on symptoms in two more patients following systemic anti-angiogenic treatment with bevacizumab (BEV) alone or in combination with chemo- and/or radiotherapy in a series of patients with leptomeningeal dissemination from primary brain tumors (diffuse astrocytoma WHO°II, anaplastic astrocytoma WHO°III, anaplastic oligodendroglioma WHO°III, primitive neuroectodermal tumor and glioblastoma, both WHO°IV). This translated into effective symptom control in five out of nine patients, but only moderate progression-free and overall survival times were reached. Partial responses as assessed by RANO criteria were observed in three patients (each one with anaplastic oligodendroglioma, primitive neuroectodermal tumor and glioblastoma). In these patients progression-free survival (PFS) intervals of 17, 10 and 20 weeks were achieved. In three patients (each one with diffuse astrocytoma, anaplastic astrocytoma and primitive neuroectodermal tumor) stable disease was observed with PFS of 13, 30 and 8 weeks. Another three patients (all with glioblastoma) were primary non-responders and deteriorated rapidly with PFS of 3 to 4 weeks. No severe adverse events were seen. These experiences suggest that the combination of BEV with more conventional therapy schemes with chemo- and/or radiotherapy may be a palliative treatment option for patients with leptomeningeal dissemination of brain tumors.


Assuntos
Astrocitoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Meníngeas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Adulto , Astrocitoma/patologia , Astrocitoma/radioterapia , Bevacizumab/administração & dosagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Terapia Combinada , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/secundário , Pessoa de Meia-Idade , Metástase Neoplásica , Neovascularização Patológica/patologia , Neovascularização Patológica/radioterapia , Prognóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...