Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 25(7): 1121-1141, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856570

RESUMO

Sugarcane is an economically important crop plant across the globe as it is the primary source of sugar and biofuel. Its growth and development are greatly influenced by water availability; therefore, in periods of water scarcity, yields are severely compromised. Small Ubiquitin-Like Modifier (SUMO) proteases play an important role in stress responses by regulating the SUMO-related post-translational modification of proteins. In an attempt to enhance drought tolerance in sugarcane, this crop was genetically transformed with a cysteine protease (OVERLY TOLERANT TO SALT-1; OTS1) from Arabidopsis thaliana using particle bombardment. Transgenic plants were analysed in terms of photosynthetic capacity, oxidative damage, antioxidant accumulation and the SUMO-enrich protein profile was assessed. Sugarcane transformed with the AtOTS1 gene displayed enhanced drought tolerance and delayed leaf senescence under water deficit compared to the untransformed wild type (WT). The AtOTS1 transgenic plants maintained a high relative moisture content and higher photosynthesis rate when compared to the WT. In addition, when the transgene was expressed at high levels, the transformed plants were able to maintain higher stomatal conductance and chlorophyl content under moderate stress compared to the WT. Under severe water deficit stress, the transgenic plants accumulated less malondialdehyde and maintained membrane integrity. SUMOylation of total protein and protease activity was lower in the AtOTS1 transformed plants compared to the WT, with several SUMO-enriched proteins exclusively expressed in the transgenics when exposed to water deficit stress. SUMOylation of proteins likely influenced various mechanisms contributing to enhanced drought tolerance in sugarcane.


Assuntos
Arabidopsis , Saccharum , Saccharum/genética , Peptídeo Hidrolases/metabolismo , Ubiquitina/metabolismo , Resistência à Seca , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo , Endopeptidases/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Água/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
2.
J Econ Entomol ; 110(2): 692-701, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334389

RESUMO

The intimate relationship between an aphid and its host is mediated by the composition of the secreted saliva. In the present study, aphid heads were sampled and transcript profiling conducted after aphids were fed on their preference host and transferred to a variety of preference and nonpreference hosts. It was found that the virulent Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) biotype SAM was able to selectively up-regulate more transcripts when confronted with feeding on a variety of hosts, than was the case with the less virulent D. noxia biotype SA1, suggesting increased genomic regulation when coping with a stressful environment. Collectively, the observed transcriptomic changes are supported by previous findings that host changes induce significant changes in the proteome of phytophagous hemipterans, unlike in many other entomophagous generalist species. The current data suggest that highly specialized hemipterans may be able to counter plant defenses with inducible salivary transcripts with resulting protein biosynthesis, as demonstrated here.


Assuntos
Antibiose , Afídeos/genética , Transcriptoma , Triticum/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Afídeos/fisiologia , DNA Complementar/genética , Ecótipo , Herbivoria , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...