Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 233: 123470, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736974

RESUMO

This research studies in detail four different assays, namely DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), FRAP (ferric ion reducing antioxidant potential) and FC (Folin-Ciocalteu), to determine the antioxidant capacity of standard substances as well as 50 organosolv lignins, and two kraft lignins. The coefficient of variation was determined for each method and was lowest for ABTS and highest for DPPH. The best correlation was found for FRAP and FC, which both rely on a single electron transfer mechanism. A good correlation between ABTS, FRAP and FC, respectively, could be observed, even though ABTS relies on a more complex reaction mechanism. The DPPH assay merely correlates with the others, implying that it reflects different antioxidative attributes due to a different reaction mechanism. Lignins obtained from paulownia and silphium have been investigated for the first time regarding their antioxidant capacity. Paulownia lignin is in the same range as beech wood lignin, while silphium lignin resembles wheat straw lignin. Miscanthus lignin is an exception from the grass lignins and possesses a significantly higher antioxidant capacity. All lignins possess a good antioxidant capacity and thus are promising candidates for various applications, e. g. as additives in food packaging or for biomedical purposes.


Assuntos
Antioxidantes , Lignina , Antioxidantes/farmacologia , Antioxidantes/química , Lignina/química , Extratos Vegetais/química , Poaceae
2.
J Pharm Biomed Anal ; 212: 114649, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35158188

RESUMO

Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin's molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6% and 12.9% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin's molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems.


Assuntos
Lignina , Poaceae , Lignina/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Peso Molecular , Poaceae/química
3.
Anal Chem ; 94(9): 3997-4004, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35201769

RESUMO

Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize.


Assuntos
Lignina , Calibragem , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Peso Molecular
4.
ACS Omega ; 6(44): 29516-29524, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778623

RESUMO

The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (M w and M n) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7-9 and 14-16% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography.

5.
Biomacromolecules ; 21(5): 1929-1942, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32186856

RESUMO

A catalyst-free organosolv pulping process was applied to cup plant (Silphium perfoliatum, S), Miscanthus grass (Miscanthus x giganteus, M), and the Paulownia tree (Paulownia tomentosa, P), resulting in high-purity lignins with no signals for cellulose, hemicellulose, or other impurities in two-dimensional heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectra. Different biomass particle sizes used for the organosolv pulping (1.6-2.0 mm (1); 0.5-1.0 mm (2); <0.25 mm (3)) influenced the molecular weight and chemical structure of the isolated lignins. Principal component analysis (PCA) of 1H NMR data revealed a high intergroup variance of Miscanthus and Paulownia lignins, separating the small particle fraction from the larger ones. Furthermore, monolignol ratios identified via HSQC NMR differ significantly: Miscanthus lignins were composed of all three monolignols (guaiacyl (G), p-hydroxyphenyl (H), syringyl (S)), while for Paulownia and Silphium lignins only G and S units were observed (except for P3).


Assuntos
Lignina , Poaceae , Biomassa , Celulose , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Nanoscale Adv ; 2(9): 4199-4211, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132762

RESUMO

Multiwalled carbon nanotubes (MWCNTs) were easily and efficiently functionalised with highly cross-linked polyamines. The radical polymerisation of two bis-vinylimidazolium salts in the presence of pristine MWCNTs and azobisisobutyronitrile (AIBN) as a radical initiator led to the formation of materials with a high functionalisation degree. The subsequent treatment with sodium borohydride gave rise to the reduction of imidazolium moieties with the concomitant formation of secondary and tertiary amino groups. The obtained materials were characterised by thermogravimetric analysis (TGA), elemental analysis, solid state 13C-NMR, Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), potentiometric titration, and temperature programmed desorption of carbon dioxide (CO2-TPD). One of the prepared materials was tested as a heterogeneous base catalyst in C-C bond forming reactions such as the Knoevenagel condensation and Henry reaction. Furthermore, two examples concerning a sequential one-pot approach involving two consecutive reactions, namely Knoevenagel and Michael reactions, were reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...