Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652810

RESUMO

Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In this work, we investigate how this spin-entropy impacts heat-to-charge conversion in the A-type antiferromagnet CrSBr. We perform simultaneous measurements of electrical conductance and thermocurrent while changing magnetic order using the temperature and magnetic field as tuning parameters. We find a strong enhancement of the thermoelectric power factor at around the Néel temperature. We further reveal that the power factor at low temperatures can be increased by up to 600% upon applying a magnetic field. Our results demonstrate that the thermoelectric properties of 2D magnets can be optimized by exploiting the sizable impact of spin-entropy and confirm thermoelectric measurements as a sensitive tool to investigate subtle magnetic phase transitions in low-dimensional magnets.

2.
Nano Lett ; 23(22): 10126-10131, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955345

RESUMO

Magnetism in reduced dimensionalities is of great fundamental interest while also providing perspectives for applications of materials with novel functionalities. In particular, spin dynamics in two dimensions (2D) have become a focus of recent research. Here, we report the observation of coherent propagating spin-wave dynamics in a ∼30 nm thick flake of 2D van der Waals ferromagnet Fe5GeTe2 using X-ray microscopy. Both phase and amplitude information were obtained by direct imaging below TC for frequencies from 2.77 to 3.84 GHz, and the corresponding spin-wave wavelengths were measured to be between 1.5 and 0.5 µm. Thus, parts of the magnonic dispersion relation were determined despite a relatively high magnetic damping of the material. Numerically solving an analytic multilayer model allowed us to corroborate the experimental dispersion relation and predict the influence of changes in the saturation magnetization or interlayer coupling, which could be exploited in future applications by temperature control or stacking of 2D-heterostructures.

3.
Nat Mater ; 22(2): 180-185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36732344

RESUMO

Only single-electron transistors with a certain level of cleanliness, where all states can be properly accessed, can be used for quantum experiments. To reveal their exceptional properties, carbon nanomaterials need to be stripped down to a single element: graphene has been exfoliated into a single sheet, and carbon nanotubes can reveal their vibrational, spin and quantum coherence properties only after being suspended across trenches1-3. Molecular graphene nanoribbons4-6 now provide carbon nanostructures with single-atom precision but suffer from poor solubility, similar to carbon nanotubes. Here we demonstrate the massive enhancement of the solubility of graphene nanoribbons by edge functionalization, to yield ultra-clean transport devices with sharp single-electron features. Strong electron-vibron coupling leads to a prominent Franck-Condon blockade, and the atomic definition of the edges allows identifying the associated transverse bending mode. These results demonstrate how molecular graphene can yield exceptionally clean electronic devices directly from solution. The sharpness of the electronic features opens a path to the exploitation of spin and vibrational properties in atomically precise graphene nanostructures.

4.
Adv Mater ; 35(12): e2208930, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637996

RESUMO

Topological charge plays a significant role in a range of physical systems. In particular, observations of real-space topological objects in magnetic materials have been largely limited to skyrmions - states with a unitary topological charge. Recently, more exotic states with varying topology, such as antiskyrmions, merons, or bimerons and 3D states such as skyrmion strings, chiral bobbers, and hopfions, have been experimentally reported. Along these lines, the realization of states with higher-order topology has the potential to open new avenues of research in topological magnetism and its spintronic applications. Here, real-space imaging of such spin textures, including skyrmion, skyrmionium, skyrmion bag, and skyrmion sack states, observed in exfoliated flakes of the van der Waals magnet Fe3-x GeTe2 (FGT) is reported. These composite skyrmions may emerge from seeded, loop-like states condensed into the stripe domain structure, demonstrating the possibility to realize spin textures with arbitrary integer topological charge within exfoliated flakes of 2D magnets. The general nature of the formation mechanism motivates the search for composite skyrmion states in both well-known and new magnetic materials, which may yet reveal an even richer spectrum of higher-order topological objects.

5.
Nano Lett ; 22(23): 9236-9243, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36400013

RESUMO

Skyrmions have been well studied in chiral magnets and magnetic thin films due to their potential application in practical devices. Recently, monochiral skyrmions have been observed in two-dimensional van der Waals magnets. Their atomically flat surfaces and capability to be stacked into heterostructures offer new prospects for skyrmion applications. However, the controlled local nucleation of skyrmions within these materials has yet to be realized. Here, we utilize real-space X-ray microscopy to investigate a heterostructure composed of the 2D ferromagnet Fe3GeTe2 (FGT), an insulating hexagonal boron nitride layer, and a graphite top electrode. Upon a stepwise increase of the voltage applied between the graphite and FGT, a vertically conducting pathway can be formed. This nanocontact allows the tunable creation of individual skyrmions via single nanosecond pulses of low current density. Furthermore, time-resolved magnetic imaging highlights the stability of the nanocontact, while our micromagnetic simulations reproduce the observed skyrmion nucleation process.

6.
ACS Nano ; 16(8): 12338-12344, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35968692

RESUMO

van der Waals heterostructures made from graphene and three-dimensional topological insulators promise very high electron mobilities, a nontrivial spin texture, and a gate-tunability of electronic properties. Such a combination of advantageous electronic characteristics can only be achieved through proximity effects in heterostructures, as graphene lacks a large enough spin-orbit interaction. In turn, the heterostructures are promising candidates for all-electrical control of proximity-induced spin phenomena. Here, we explore epitaxially grown interfaces between graphene and the lattice-matched topological insulator Bi2Te2Se. For this heterostructure, spin-orbit coupling proximity has been predicted to impart an anisotropic and electronically tunable spin texture. Polarization-resolved second-harmonic generation, Raman spectroscopy, and time-resolved magneto-optic Kerr microscopy are combined to demonstrate that the atomic interfaces align in a commensurate symmetry with characteristic interlayer vibrations. By polarization-resolved photocurrent measurements, we find a circular photogalvanic effect which is drastically enhanced at the Dirac point of the proximitized graphene. We attribute the peculiar gate-tunability to the proximity-induced interfacial spin structure, which could be exploited for, e.g., spin filters.

7.
Nat Commun ; 13(1): 3152, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672292

RESUMO

Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. Electric spin valve experiments have thus far provided global information on such devices, while leaving the local interplay between symmetry breaking, charge flow across the heterointerface and aspects of topology unexplored. Here, we probe the gate-tunable local spin polarisation in current-driven graphene/WTe2 heterostructures through magneto-optical Kerr microscopy. Even for a nominal in-plane transport, substantial out-of-plane spin accumulation is induced by a corresponding out-of-plane current flow. We present a theoretical model which fully explains the gate- and bias-dependent onset and spatial distribution of the intense Kerr signal as a result of a non-linear anomalous Hall effect in the heterostructure, which is enabled by its reduced point group symmetry. Our findings unravel the potential of 2D heterostructure engineering for harnessing topological phenomena for spintronics, and constitute an important step toward nanoscale, electrical spin control.

8.
ACS Nano ; 14(4): 4626-4635, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32283013

RESUMO

Formation and characterization of low-dimensional nanostructures is crucial for controlling the properties of two-dimensional (2D) materials such as graphene. Here, we study the structure of low-dimensional adsorbates of cesium iodide (CsI) on free-standing graphene using aberration-corrected transmission electron microscopy at atomic resolution. CsI is deposited onto graphene as charged clusters by electrospray ion-beam deposition. The interaction with the electron beam forms two-dimensional CsI crystals only on bilayer graphene, while CsI clusters consisting of 4, 6, 7, and 8 ions are exclusively observed on single-layer graphene. Chemical characterization by electron energy-loss spectroscopy imaging and precise structural measurements evidence the possible influence of charge transfer on the structure formation of the CsI clusters and layers, leading to different distances of the Cs and I to the graphene.

9.
Nano Lett ; 19(7): 4659-4665, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241971

RESUMO

Proximity effects induced in the two-dimensional Dirac material graphene potentially open access to novel and intriguing physical phenomena. Thus far, the coupling between graphene and ferromagnetic insulators has been experimentally established. However, only very little is known about graphene's interaction with antiferromagnetic insulators. Here, we report a low-temperature study of the electronic properties of high quality van der Waals heterostructures composed of a single graphene layer proximitized with α-RuCl3. The latter is known to become antiferromagnetically ordered below 10 K. Shubnikov-de Haas oscillations in the longitudinal resistance together with Hall resistance measurements provide clear evidence for a band realignment that is accompanied by a transfer of electrons originally occupying the graphene's spin degenerate Dirac cones into α-RuCl3 band states with in-plane spin polarization. Left behind are holes in two separate Fermi pockets, only the dispersion of one of which is distorted near the Fermi energy due to spin selective hybridization with these spin polarized α-RuCl3 band states. This interpretation is supported by our density functional theory calculations. An unexpected damping of the quantum oscillations as well as a zero-field resistance upturn close to the Néel temperature of α-RuCl3 suggest the onset of additional spin scattering due to spin fluctuations in the α-RuCl3.

10.
ACS Appl Mater Interfaces ; 11(23): 20973-20978, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31145585

RESUMO

Tunneling field-effect transistors (TFETs) are of considerable interest owing to their capability of low-power operation. Here, we demonstrate a novel type of TFET which is composed of a thin black phosphorus-tin diselenide (BP-SnSe2) heterostructure. This combination of 2D semiconductor thin sheets enables device operation either as an Esaki diode featuring negative differential resistance (NDR) in the negative gate voltage regime or as a backward diode in the positive gate bias regime. Such tuning possibility is imparted by the fact that only the carrier concentration in the BP component can be effectively modulated by electrostatic gating, while the relatively high carrier concentration in the SnSe2 sheet renders it insensitive against gating. Scanning photocurrent microscopy maps indicate the presence of a staggered (type II) band alignment at the heterojunction. The temperature-dependent NDR behavior of the devices is explainable by an additional series resistance contribution from the individual BP and SnSe2 sheets connected in series. Moreover, the backward rectification behavior can be consistently described by the thermionic emission theory, pointing toward the gating-induced formation of a potential barrier at the heterojunction. It furthermore turned out that for effective Esaki diode operation, care has to be taken to avoid the formation of positive charges trapped in the alumina passivation layer.

11.
Nano Lett ; 18(5): 3203-3208, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29635914

RESUMO

The small gap semiconductor α-RuCl3 has emerged as a promising candidate for quantum spin liquid materials. Thus far, Raman spectroscopy, neutron scattering, and magnetization measurements have provided valuable hints for collective spin behavior in α-RuCl3 bulk crystals. However, the goal of implementing α-RuCl3 into spintronic devices would strongly benefit from the possibility of electrically probing these phenomena. To address this, we first investigated nanoflakes of α-RuCl3 by Raman spectroscopy and observed similar behavior as in the case of the bulk material, including the signatures of possible fractionalized excitations. In complementary experiments, we investigated the electrical charge transport properties of individual α-RuCl3 nanoflakes in the temperature range between 120 and 290 K. The observed temperature-dependent electrical resistivity is consistent with variable range hopping behavior and exhibits a transition at about 180 K, close to the onset temperature observed in our Raman measurements. In conjunction with the established relation between structure and magnetism in the bulk, we interpret this transition to coincide with the emergence of fractionalized excitations due to the Kitaev interactions in the nanoflakes. Compared to the bulk samples, the transition temperature of the underlying structural change is larger in the nanoflakes. This difference is tentatively attributed to the dimensionality of the nanoflakes as well as the formation of stacking faults during mechanical exfoliation. The demonstrated devices open up novel perspectives toward manipulating the Kitaev-phase in α-RuCl3 via electrical means.

12.
J Phys Condens Matter ; 30(10): 105302, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29393070

RESUMO

Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

13.
Nat Commun ; 9(1): 331, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362413

RESUMO

Three-dimensional topological insulators are a class of Dirac materials, wherein strong spin-orbit coupling leads to two-dimensional surface states. The latter feature spin-momentum locking, i.e., each momentum vector is associated with a spin locked perpendicularly to it in the surface plane. While the principal spin generation capability of topological insulators is well established, comparatively little is known about the interaction of the spins with external stimuli like polarized light. We observe a helical, bias-dependent photoconductance at the lateral edges of topological Bi2Te2Se platelets for perpendicular incidence of light. The same edges exhibit also a finite bias-dependent Kerr angle, indicative of spin accumulation induced by a transversal spin Hall effect in the bulk states of the Bi2Te2Se platelets. A symmetry analysis shows that the helical photoconductance is distinct to common longitudinal photoconductance and photocurrent phenomena, but consistent with optically injected spins being transported in the side facets of the platelets.

14.
ACS Appl Mater Interfaces ; 9(49): 42912-42918, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29200255

RESUMO

Ultrathin sheets of two-dimensional (2D) materials like transition metal dichalcogenides have attracted strong attention as components of high-performance light-harvesting devices. Here, we report the implementation of Schottky junction-based photovoltaic devices through site-selective surface doping of few-layer WSe2 in lateral contact configuration. Specifically, whereas the drain region is covered by a strong molecular p-type dopant (NDP-9) to achieve an Ohmic contact, the source region is coated with an Al2O3 layer, which causes local n-type doping and correspondingly an increase of the Schottky barrier at the contact. By scanning photocurrent microscopy using green laser light, it could be confirmed that photocurent generation is restricted to the region around the source contact. The local photoinduced charge separation is associated with a photoresponsivity of up to 20 mA W-1 and an external quantum efficiency of up to 1.3%. The demonstrated device concept should be easily transferrable to other van der Waals 2D materials.

16.
Nano Lett ; 17(2): 973-979, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28081604

RESUMO

Topological insulators constitute a fascinating class of quantum materials with nontrivial, gapless states on the surface and insulating bulk states. By revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se nanowires allows us to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface and bulk states dynamics on the different time scales gives rise to a surprising physical property of Bi2Te2Se nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se nanowires can be used as THz generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se nanowires as active modules in optoelectronic high-frequency and THz circuits.

17.
Nano Lett ; 17(1): 214-219, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073269

RESUMO

Tuning the electron and phonon transport properties of thermoelectric materials by nanostructuring has enabled improving their thermopower figure of merit. Three-dimensional topological insulators, including many bismuth chalcogenides, attract increasing attention for this purpose, as their topologically protected surface states are promising to further enhance the thermoelectric performance. While individual bismuth chalcogenide nanostructures have been studied with respect to their photothermoelectric properties, nanostructured p-n junctions of these compounds have not yet been explored. Here, we experimentally investigate the room temperature thermoelectric conversion capability of lateral heterostructures consisting of two different three-dimensional topological insulators, namely, the n-type doped Bi2Te2Se and the p-type doped Sb2Te3. Scanning photocurrent microscopy of the nanoplatelets reveals efficient thermoelectric conversion at the p-n heterojunction, exploiting hot carriers of opposite sign in the two materials. From the photocurrent data, a Seebeck coefficient difference of ΔS = 200 µV/K was extracted, in accordance with the best values reported for the corresponding bulk materials. Furthermore, it is in very good agreement with the value of ΔS = 185 µV/K obtained by DFT calculation taking into account the specific doping levels of the two nanostructured components.

18.
ACS Nano ; 11(1): 1034-1040, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045499

RESUMO

Raman scattering is a powerful tool for investigating the vibrational properties of two-dimensional materials. Unlike the 2H phase of many transition metal dichalcogenides, the 1T phase of TiSe2 features a Raman-active shearing and breathing mode, both of which shift toward lower energy with increasing number of layers. By systematically studying the Raman signal of 1T-TiSe2 in dependence of the sheet thickness, we demonstrate that the charge density wave transition of this compound can be reliably determined from the temperature dependence of the peak position of the Eg mode near 136 cm-1. The phase transition temperature is found to first increase with decreasing thickness of the sheets, followed by a decrease due to the effect of surface oxidation. The Raman spectroscopy-based method is expected to be applicable also to other 1T-phase transition metal dichalcogenides featuring a charge density wave transition and represents a valuable complement to electrical transport-based approaches.

19.
20.
Nano Lett ; 16(11): 6761-6766, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27696882

RESUMO

Hot carriers in semiconductor or metal nanostructures are relevant, for instance, to enhance the activity of oxide-supported metal catalysts or to achieve efficient photodetection using ultrathin semiconductor layers. Moreover, rapid collection of photoexcited hot carriers can improve the efficiency of solar cells, with a theoretical maximum of 85%. Because of the long lifetime of secondary excited electrons, graphene is an especially promising two-dimensional material to harness hot carriers for solar-to-electricity conversion. However, the photoresponse of thus far realized graphene photoelectric devices is mainly governed by thermal effects, which yield only a very small photovoltage. Here, we report a Gr-TiOx-Ti heterostructure wherein the photovoltaic effect is predominant. By doping the graphene, the open circuit voltage reaches values up to 0.30 V, 2 orders of magnitude larger than for devices relying upon the thermoelectric effect. The photocurrent turned out to be limited by trap states in the few-nanometer-thick TiOx layer. Our findings represent a first valuable step toward the integration of graphene into third-generation solar cells based upon hot carrier extraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...