Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 89(6): 1129-1144, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33749851

RESUMO

OBJECTIVE: Migraine is three times more common in women. CGRP plays a critical role in migraine pathology and causes female-specific behavioral responses upon meningeal application. These effects are likely mediated through interactions of CGRP with signaling systems specific to females. Prolactin (PRL) levels have been correlated with migraine attacks. Here, we explore a potential interaction between CGRP and PRL in the meninges. METHODS: Prolactin, CGRP, and receptor antagonists CGRP8-37 or Δ1-9-G129R-hPRL were administered onto the dura of rodents followed by behavioral testing. Immunohistochemistry was used to examine PRL, CGRP and Prolactin receptor (Prlr) expression within the dura. Electrophysiology on cultured and back-labeled trigeminal ganglia (TG) neurons was used to assess PRL-induced excitability. Finally, the effects of PRL on evoked CGRP release from ex vivo dura were measured. RESULTS: We found that dural PRL produced sustained and long-lasting migraine-like behavior in cycling and ovariectomized female, but not male rodents. Prlr was expressed on dural afferent nerves in females with little-to-no presence in males. Consistent with this, PRL increased excitability only in female TG neurons innervating the dura and selectively sensitized CGRP release from female ex vivo dura. We demonstrate crosstalk between PRL and CGRP systems as CGRP8-37 decreases migraine-like responses to dural PRL. Reciprocally, Δ1-9-G129R-hPRL attenuates dural CGRP-induced migraine behaviors. Similarly, Prlr deletion from sensory neurons significantly reduced migraine-like responses to dural CGRP. INTERPRETATION: This CGRP-PRL interaction in the meninges is a mechanism by which these peptides could produce female-selective responses and increase the prevalence of migraine in women. ANN NEUROL 2021;89:1129-1144.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meninges/metabolismo , Transtornos de Enxaqueca/metabolismo , Prolactina/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
2.
Pain ; 161(11): 2539-2550, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32541386

RESUMO

Migraine is one of the most disabling disorders worldwide but the underlying mechanisms are poorly understood. Stress is consistently reported as a common trigger of migraine attacks. Here, we show that repeated stress in mice causes migraine-like behaviors that are responsive to a migraine therapeutic. Adult female and male mice were exposed to 2 hours of restraint stress for 3 consecutive days, after which they demonstrated facial mechanical hypersensitivity and facial grimace responses that were resolved by 14 days after stress. Hypersensitivity or grimace was not observed in either control animals or those stressed for only 1 day. After return to baseline, the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg) elicited mechanical hypersensitivity in stressed but not in control animals, demonstrating the presence of hyperalgesic priming. This suggests the presence of a migraine-like state, because nitric oxide donors are reliable triggers of attacks in migraine patients but not controls. The stress paradigm also caused priming responses to dural pH 7.0 treatment. The presence of this primed state after stress is not permanent because it was no longer present at 35 days after stress. Finally, mice received either the calcitonin gene-related peptide monoclonal antibody ALD405 (10 mg/kg) 24 hours before SNP or a coinjection of sumatriptan (0.6 mg/kg). ALD405, but not sumatriptan, blocked the facial hypersensitivity due to SNP. This stress paradigm in mice and the subsequent primed state caused by stress allow further preclinical investigation of mechanisms contributing to migraine, particularly those caused by common triggers of attacks.


Assuntos
Transtornos de Enxaqueca , Animais , Peptídeo Relacionado com Gene de Calcitonina , Feminino , Humanos , Hiperalgesia/etiologia , Masculino , Camundongos , Sumatriptana
3.
J Neurosci ; 39(22): 4323-4331, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30962278

RESUMO

Migraine is the second leading cause for disability worldwide and the most common neurological disorder. It is also three times more common in women; reasons for this sex difference are not known. Using preclinical behavioral models of migraine, we show that application of calcitonin gene-related peptide (CGRP) to the rat dura mater produces cutaneous periorbital hypersensitivity. Surprisingly, this response was observed only in females; dural CGRP at doses from 1 pg to 3.8 µg produce no responses in males. In females, dural CGRP causes priming to a pH 7.0 solution after animals recover from the initial CGRP-induced allodynia. Dural application of interleukin-6 causes acute responses in males and females but only causes priming to subthreshold dural CGRP (0.1 pg) in females. Intracisternal application of BDNF also causes similar acute hypersensitivity responses in males and females but only priming to subthreshold dural CGRP (0.1 pg) in females. Females were additionally primed to a subthreshold dose of the NO-donor sodium nitroprusside (0.1 mg/kg) following dural CGRP. Finally, the sexually dimorphic responses to dural CGRP were not specific to rats as similar female-specific hypersensitivity responses were seen in mice, where increased grimace responses were also observed. These data are the first to demonstrate that CGRP-induced headache-like behavioral responses at doses up to 3.8 µg are female-specific both acutely and following central and peripheral priming. These data further implicate dural CGRP signaling in the pathophysiology of migraine and propose a model where dural CGRP-based mechanisms contribute to the sexual disparity of this female-biased disorder.SIGNIFICANCE STATEMENT Calcitonin gene-related peptide (CGRP) has long been implicated in the pathophysiology of migraine, and CGRP-based therapeutics are efficacious for the treatment of migraine in humans. However, the location of action for CGRP in migraine remains unclear. We show here that application of CGRP to the cranial meninges causes behavioral responses consistent with headache in preclinical rodent models. Surprisingly, however, these responses are only observed in females. Acute responses to meningeal CGRP are female-specific and sensitization to CGRP after two distinct stimuli are also female-specific. These data implicate the dura mater as a primary location of action for CGRP in migraine and suggest that female-specific mechanisms downstream of CGRP receptor activation contribute to the higher prevalence of migraine in women.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Dura-Máter/efeitos dos fármacos , Dura-Máter/metabolismo , Transtornos de Enxaqueca/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transtornos de Enxaqueca/fisiopatologia , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
4.
Cephalalgia ; 39(1): 123-134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848109

RESUMO

BACKGROUND: Migraine is characterized by a collection of neurological symptoms in the absence of injury or damage. However, several common preclinical migraine models require significant damage to the skull to stimulate the dura mater, the likely source of afferent signaling leading to head pain. The goal of this study was to determine whether dural stimulation can be performed in mice using an injection that does not cause injury or damage. METHODS: Using mice, injections of stimuli were administered to the dura mater through the soft tissue at the intersection between the lambdoidal and sagittal sutures. This technique did not require a permanent cannula nor did it cause damage to the skull or dura. Following injection of noxious stimuli, migraine-like behaviors were measured including cutaneous allodynia and facial grimace. The retrograde tracer fluorogold was applied onto the dura using the same injection technique to label trigeminal ganglion cell bodies, which were then testing in vitro using patch-clamp electrophysiology. RESULTS: Dural injection of allyl-isothiocyanate, low pH, interleukin-6, or inflammatory soup but not vehicles, led to cephalic/extracephalic allodynia. Facial grimace responses were also observed with allyl-isothiocyanate, pH 6.0, and interleukin-6. Stimulation with interleukin-6 causes priming to normally subthreshold pH 7.0 stimulation of the dura following resolution of the initial interleukin-6 behavior. Systemic injection of sumatriptan at the time of dural stimulation with inflammatory soup decreased the resulting cutaneous hypersensitivity. Trigeminal ganglion cell bodies retrogradely labeled from the dura had low pH-evoked currents similar to those generated by acid-sensing ion channels. CONCLUSION: Non-invasive dural stimulation in mice can be used as a model of migraine in the absence of injury.


Assuntos
Modelos Animais de Doenças , Dura-Máter/efeitos dos fármacos , Irritantes/administração & dosagem , Irritantes/toxicidade , Transtornos de Enxaqueca , Animais , Feminino , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos ICR
5.
Cephalalgia ; 39(1): 111-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848111

RESUMO

BACKGROUND: Pain is the most debilitating symptom of migraine. The cause of migraine pain likely requires activation of meningeal nociceptors. Mast cell degranulation, with subsequent meningeal nociceptor activation, has been implicated in migraine pathophysiology. Degranulating mast cells release serine proteases that can cleave and activate protease activated receptors. The purpose of these studies was to investigate whether protease activated receptor 2 is a potential generator of nociceptive input from the meninges by using selective pharmacological agents and knockout mice. METHODS: Ratiometric Ca++ imaging was performed on primary trigeminal and dural cell cultures after application of 2at-LIGRL-NH2, a specific protease activated receptor 2 agonist. Cutaneous hypersensitivity and facial grimace was measured in wild-type and protease activated receptor 2-/- mice after dural application of 2at-LIGRL-NH2 or compound 48-80, a mast cell degranulator. Behavioral experiments were also conducted in mice after dural application of 2at-LIGRL-NH2 (2AT) in the presence of either C391, a selective protease activated receptor 2 antagonist, or sumatriptan. RESULTS: 2at-LIGRL-NH2 evoked Ca2+ signaling in mouse trigeminal neurons, dural fibroblasts and in meningeal afferents. Dural application of 2at-LIGRL-NH2 or 48-80 caused dose-dependent grimace behavior and mechanical allodynia that were attenuated by either local or systemic application of C391 as well as in protease activated receptor 2-/- mice. Nociceptive behavior after dural injection of 2at-LIGRL-NH2 was also attenuated by sumatriptan. CONCLUSIONS: Functional protease activated receptor 2 receptors are expressed on both dural afferents and fibroblasts and activation of dural protease activated receptor 2 produces migraine-like behavioral responses. Protease activated receptor 2 may link resident immune cells to meningeal nociceptor activation, driving migraine-like pain and implicating protease activated receptor 2 as a therapeutic target for migraine in humans.


Assuntos
Meninges/imunologia , Transtornos de Enxaqueca/metabolismo , Dor/metabolismo , Receptor PAR-2/metabolismo , Animais , Degranulação Celular/imunologia , Masculino , Mastócitos/imunologia , Meninges/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Transtornos de Enxaqueca/imunologia , Neurônios/metabolismo , Dor/imunologia
6.
J Neurosci ; 37(31): 7481-7499, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28674170

RESUMO

Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4ES209A ). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF- and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2-/- mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2-/- mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease affecting approximately one in three Americans. Chronic pain is thought to be driven by changes in the excitability of peripheral nociceptive neurons, but the precise mechanisms controlling these changes are not elucidated. Emerging evidence demonstrates that mRNA translation regulation pathways are key factors in changes in nociceptor excitability. Our work demonstrates that a single phosphorylation site on the 5' cap-binding protein eIF4E is a critical mechanism for changes in nociceptor excitability that drive the development of chronic pain. We reveal a new mechanistic target for the development of a chronic pain state and propose that targeting the upstream kinase, MAPK interacting kinase 1/2, could be used as a therapeutic approach for chronic pain.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Dor Crônica/fisiopatologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Plasticidade Neuronal , Nociceptividade , Animais , Dor Crônica/etiologia , ATPases Transportadoras de Cobre , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor Nociceptiva/etiologia , Dor Nociceptiva/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
7.
Pain ; 157(12): 2722-2730, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27841839

RESUMO

Migraine is one of the most common and most disabling disorders. Between attacks, migraine patients are otherwise normal but are sensitized to nonnoxious events known as triggers. The purpose of these studies was to investigate whether a headache-like event causes sensitization, or priming, to subsequent subthreshold events. Interleukin-6 (IL-6) was applied to the rat cranial dura mater which produced cutaneous facial and hind paw allodynia that lasted 24 hours. At 72 hours, IL-6-treated rats developed allodynia in response to dural stimulation with either a pH 6.8 or pH 7.0 solution and to a systemic nitric oxide (NO) donor, a well-known migraine trigger. Vehicle-treated rats did not respond to either pH stimulus or to the NO donor, demonstrating that IL-6 exposure primes rats to subthreshold stimuli. Inhibitors of brain-derived neurotrophic factor (BDNF) signaling given either systemically or intracisternally 24 hours after IL-6 eliminated responses to dural pH stimulation at 72 hours. Additionally, intracisternal administration of BDNF without previous dural stimulation produced allodynia and once resolved, animals were primed to dural pH 6.8/pH 7.0 and a systemic NO donor. Finally, hind paw IL-6 produced paw allodynia but not priming to paw injection of pH 7.0 at 72 hours demonstrating differences in priming depending on location. These data indicate that afferent input from the meninges produces BDNF-dependent priming of the dural nociceptive system. This primed state mimics the interictal period of migraine where attacks can be triggered by normally nonnoxious events and suggests that BDNF-dependent plasticity may contribute to migraine.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/etiologia , Animais , Azepinas/uso terapêutico , Benzamidas/uso terapêutico , Dura-Máter/efeitos dos fármacos , Dura-Máter/fisiologia , Feminino , Concentração de Íons de Hidrogênio , Hiperalgesia/induzido quimicamente , Interleucina-6/efeitos adversos , Masculino , Doadores de Óxido Nítrico/toxicidade , Nitroprussiato/toxicidade , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor trkC/química , Teste de Desempenho do Rota-Rod , Fatores de Tempo
8.
Cephalalgia ; 36(2): 185-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25944818

RESUMO

BACKGROUND: Migraine headache is a neurological disorder affecting millions worldwide. However, little is known about the mechanisms contributing to migraine. Recent genome-wide association studies have found single nucleotide polymorphisms in the gene encoding transient receptor potential channel M8. Transient receptor potential channel M8 is generally known as a cold receptor but it has been implicated in pain signaling and may play a role in migraine pain. METHODS: In order to investigate whether transient receptor potential channel M8 may contribute to the pain of migraine, the transient receptor potential channel M8 activator icilin was applied to the dura mater using a rat behavioral model of headache. Cutaneous allodynia was measured for 5 hours using Von Frey filaments. RESULTS: Dural application of icilin produced cutaneous facial and hind paw allodynia that was attenuated by systemic pretreatment with the transient receptor potential channel M8-selective antagonist AMG1161 (10 mg/kg p.o.). Further, the anti-migraine agent sumatriptan (0.6 mg/kg s.c.) or the non-selective NOS inhibitor L-NAME (20 mg/kg i.p.) also attenuated allodynia when given as a pretreatment. CONCLUSIONS: These data indicate that transient receptor potential channel M8 activation in the meninges produces behaviors in rats that are consistent with migraine and that are sensitive to pharmacological mechanisms known to have efficacy for migraine in humans. The findings suggest that activation of meningeal transient receptor potential channel M8 may contribute to the pain of migraine.


Assuntos
Hiperalgesia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Canais de Cátion TRPM/metabolismo , Animais , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Transtornos de Enxaqueca/metabolismo , Pirimidinonas/farmacologia , Ratos , Ratos Sprague-Dawley
9.
Pain ; 156(5): 859-867, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25734998

RESUMO

Protease-activated receptor type 2 (PAR2) is known to play an important role in inflammatory, visceral, and cancer-evoked pain based on studies using PAR2 knockout (PAR2(-/-)) mice. We have tested the hypothesis that specific activation of PAR2 is sufficient to induce a chronic pain state through extracellular signal-regulated kinase (ERK) signaling to protein synthesis machinery. We have further tested whether the maintenance of this chronic pain state involves a brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (trkB)/atypical protein kinase C (aPKC) signaling axis. We observed that intraplantar injection of the novel highly specific PAR2 agonist, 2-aminothiazol-4-yl-LIGRL-NH2 (2-at), evokes a long-lasting acute mechanical hypersensitivity (median effective dose ∼12 pmoles), facial grimacing, and causes robust hyperalgesic priming as revealed by a subsequent mechanical hypersensitivity and facial grimacing to prostaglandin E2 (PGE2) injection. The promechanical hypersensitivity effect of 2-at is completely absent in PAR2(-/-) mice as is hyperalgesic priming. Intraplantar injection of the upstream ERK inhibitor, U0126, and the eukaryotic initiation factor (eIF) 4F complex inhibitor, 4EGI-1, prevented the development of acute mechanical hypersensitivity and hyperalgesic priming after 2-at injection. Systemic injection of the trkB antagonist ANA-12 similarly inhibited PAR2-mediated mechanical hypersensitivity, grimacing, and hyperalgesic priming. Inhibition of aPKC (intrathecal delivery of ZIP) or trkB (systemic administration of ANA-12) after the resolution of 2-at-induced mechanical hypersensitivity reversed the maintenance of hyperalgesic priming. Hence, PAR2 activation is sufficient to induce neuronal plasticity leading to a chronic pain state, the maintenance of which is dependent on a BDNF/trkB/aPKC signaling axis.


Assuntos
Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Receptor PAR-2/agonistas , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Azepinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Butadienos/farmacologia , Dor Crônica/induzido quimicamente , Dor Crônica/tratamento farmacológico , Dor Crônica/psicologia , Dinoprostona/farmacologia , Modelos Animais de Doenças , Expressão Facial , Hidrazonas/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/psicologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Nitrilas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Receptor PAR-2/deficiência , Receptor trkB/antagonistas & inibidores , Tiazóis/farmacologia
10.
Prog Mol Biol Transl Sci ; 131: 537-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25744685

RESUMO

Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.


Assuntos
Meninges/metabolismo , Meninges/fisiopatologia , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Transdução de Sinais , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Humanos , Canais Iônicos/metabolismo , Meninges/patologia , Transtornos de Enxaqueca/terapia , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...