Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2647: 83-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041330

RESUMO

Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.


Assuntos
Genes Mitocondriais , Doenças Mitocondriais , Animais , Humanos , Oócitos/metabolismo , Mitocôndrias/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/genética
2.
Nat Metab ; 3(8): 1091-1108, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253906

RESUMO

Cell competition is emerging as a quality-control mechanism that eliminates unfit cells in a wide range of settings from development to the adult. However, the nature of the cells normally eliminated by cell competition and what triggers their elimination remains poorly understood. In mice, 35% of epiblast cells are eliminated before gastrulation. Here we show that cells with mitochondrial defects are eliminated by cell competition during early mouse development. Using single-cell transcriptional profiling of eliminated mouse epiblast cells, we identify hallmarks of cell competition and mitochondrial defects. We demonstrate that mitochondrial defects are common to a range of different loser cell types and that manipulating mitochondrial function triggers cell competition. Moreover, we show that in the mouse embryo, cell competition eliminates cells with sequence changes in mt-Rnr1 and mt-Rnr2, and that even non-pathological changes in mitochondrial DNA sequences can induce cell competition. Our results suggest that cell competition is a purifying selection that optimizes mitochondrial performance before gastrulation.


Assuntos
Competição entre as Células , Embrião de Mamíferos , Desenvolvimento Embrionário , Mitocôndrias/genética , Mitocôndrias/metabolismo , Animais , Biomarcadores , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Análise de Célula Única/métodos
3.
Curr Top Dev Biol ; 128: 339-363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29477168

RESUMO

From fertilization until the onset of gastrulation the early mammalian embryo undergoes a dramatic series of changes that converts a single fertilized cell into a remarkably complex organism. Much attention has been given to the molecular changes occurring during this process, but here we will review what is known about the changes affecting the mitochondria and how they impact on the energy metabolism and apoptotic response of the embryo. We will also focus on understanding what quality control mechanisms ensure optimal mitochondrial activity in the embryo, and in this way provide an overview of the importance of the mitochondria in determining cell fitness during early mammalian development.


Assuntos
Desenvolvimento Embrionário , Mamíferos/embriologia , Mitocôndrias/metabolismo , Animais , Apoptose , DNA Mitocondrial/genética , Humanos , Biogênese de Organelas
5.
Gerontology ; 63(5): 417-425, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27820924

RESUMO

The number of species for which somatic cell nuclear transfer (SCNT) protocols are established is still increasing. Due to the high number of cloned farm, companion, and sport animals, the topic of animal cloning never ceases to be of public interest. Numerous studies cover the health status of SCNT-derived animals, but very few cover the effects of SCNT on aging. However, only cloned animals that reach the full extent of the species-specific lifespan, doing so with only the normal age-related afflictions and diseases, would prove that SCNT can produce completely healthy offspring. Here, we review the available literature and own data to answer the question whether the aging process of cloned animals is qualitatively different from normal animals. We focus on 4 main factors that were proposed to influence aging in these animals: epigenetic (dys)regulation, accumulation of damaged macromolecules, shortened telomeres, and (nuclear donor-derived) age-related DNA damage. We find that at least some cloned animals can reach the species-specific maximum age with a performance that matches that of normal animals. However, for most species, only anecdotal evidence of cloned animals reaching high age is available. We therefore encourage reports on the aging of cloned animals to make further analysis on the performance of SCNT possible.


Assuntos
Envelhecimento/fisiologia , Clonagem de Organismos , Animais , Dano ao DNA/fisiologia , Epigênese Genética/fisiologia , Encurtamento do Telômero/fisiologia
6.
Front Genet ; 6: 137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25964796

RESUMO

Trypanosomosis is a serious cause of reduction in productivity of cattle in tsetse-fly infested areas. Baoule and other local Taurine cattle breeds in Burkina Faso are trypanotolerant. Zebuine cattle, which are also kept there are susceptible to trypanosomosis but bigger in body size. Farmers have continuously been intercrossing Baoule and Zebu animals to increase production and disease tolerance. The aim of this study was to compare levels of zebuine and taurine admixture in genomic regions potentially involved in trypanotolerance with background admixture of composites to identify differences in allelic frequencies of tolerant and non-tolerant animals. The study was conducted on 214 animals (90 Baoule, 90 Zebu, and 34 composites), genotyped with 25 microsatellites across the genome and with 155 SNPs in 23 candidate regions. Degrees of admixture of composites were analyzed for microsatellite and SNP data separately. Average Baoule admixture based on microsatellites across the genomes of the Baoule- Zebu composites was 0.31, which was smaller than the average Baoule admixture in the trypanosomosis candidate regions of 0.37 (P = 0.15). Fixation index F ST measured in the overall genome based on microsatellites or with SNPs from candidate regions indicates strong differentiation between breeds. Nine out of 23 regions had F ST ≥ 0.20 calculated from haplotypes or individual SNPs. The levels of admixture were significantly different from background admixture, as revealed by microsatellite data, for six out of the nine regions. Five out of the six regions showed an excess of Baoule ancestry. Information about best levels of breed composition would be useful for future breeding ctivities, aiming at trypanotolerant animals with higher productive capacity.

7.
Biol Reprod ; 82(3): 563-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19955333

RESUMO

Ooplasmic transfer (OT) has been used in basic mouse research for studying the segregation of mtDNA, as well as in human assisted reproduction for improving embryo development in cases of persistent developmental failure. Using cattle as a large-animal model, we demonstrate that the moderate amount of mitochondria introduced by OT is transmitted to the offspring's oocytes; e.g., modifies the germ line. The donor mtDNA was detectable in 25% and 65% of oocytes collected from two females. Its high variation in heteroplasmic oocytes, ranging from 1.1% to 33.5% and from 0.4% to 15.5%, can be explained by random genetic drift in the female germ line. Centrifugation-mediated enrichment of mitochondria in the pole zone of the recipient zygote's ooplasm and its substitution by donor ooplasm led to elevated proportions of donor mtDNA in reconstructed zygotes compared with zygotes produced by standard OT (23.6% +/- 9.6% versus 12.1% +/- 4.5%; P < 0.0001). We also characterized the proliferation of mitochondria from the OT parents-the recipient zygote (Bos primigenius taurus type) and the donor ooplasm (B. primigenius indicus type). Regression analysis performed for 57 tissue samples collected from the seven OT fetuses at different points during fetal development found a decreasing proportion of donor mtDNA (r(2) = 0.78). This indicates a preferred proliferation of recipient taurine mitochondria in the context of the nuclear genotype of the OT recipient expressing a B. primigenius indicus phenotype.


Assuntos
Citoplasma/transplante , Mitocôndrias/fisiologia , Técnicas de Transferência Nuclear , Oócitos/citologia , Animais , Bovinos , Células Cultivadas , Corrente Citoplasmática/fisiologia , DNA Mitocondrial/genética , Técnicas de Cultura Embrionária , Transferência Embrionária/veterinária , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Células Germinativas/citologia , Células Germinativas/ultraestrutura , Técnicas de Transferência Nuclear/veterinária , Oócitos/ultraestrutura , Gravidez , Doadores de Tecidos
8.
BMC Dev Biol ; 7: 141, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18154666

RESUMO

BACKGROUND: The mitochondrial DNA (mtDNA) of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT) was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. RESULTS: The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 +/- 54, B: 292 +/- 33 and C: 561 +/- 88). The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS) PCR (i.e. ARMS-qPCR). For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR). We report the first cases (n = 4 fetuses, n = 3 lambs) of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6) indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5%) was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. CONCLUSION: Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones tested, whereby all but one case revealed less than 1% mtDNA contribution from the nuclear donor cell suggesting neutral segregation.


Assuntos
Clonagem de Organismos/métodos , DNA Mitocondrial/genética , Técnicas de Transferência Nuclear , Ovinos/embriologia , Ovinos/genética , Animais , Embrião de Mamíferos , Feminino , Dosagem de Genes , Padrões de Herança , Repetições de Microssatélites , Oócitos/citologia , Reação em Cadeia da Polimerase , Gravidez , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...