Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453313

RESUMO

Different findings indicate that type 2 diabetes is an independent risk factor for osteoarthritis (OA). However, the mechanisms underlying the connection between both diseases remain unclear. Changes in the balance of hydrogen sulphide (H2S) are thought to play an important role in the pathogenesis of diabetes and its complications, although its role is still controversial. In this study, we examined the modulation of H2S levels in serum and chondrocytes from OA diabetic (DB) and non-diabetic (non-DB) patients and in cells under glucose stress, in order to elucidate whether impairment in H2S-mediated signalling could participate in the onset of DB-related OA. Here, we identified a reduction in H2S synthesis in the cartilage from OA-DB patients and in cells under glucose stress, which is associated with hyperglycaemia-mediated dysregulation of chondrocyte metabolism. In addition, our results indicate that H2S is an inductor of the Nrf-2/HO-1 signalling pathway in cartilage, but is also a downstream target of Nrf-2 transcriptional activity. Thereby, impairment of the H2S/Nrf-2 axis under glucose stress or DB triggers chondrocyte catabolic responses, favouring the disruption of cartilage homeostasis that characterizes OA pathology. Finally, our findings highlight the benefits of the use of exogeneous sources of H2S in the treatment of DB-OA patients, and warrant future clinical studies.

2.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050005

RESUMO

Osteoarthritis (OA) is the most common articular chronic disease. However, its current treatment is limited and mostly symptomatic. Hydrogen sulfide (H2S) is an endogenous gas with recognized physiological activities. The purpose here was to evaluate the effects of the intraarticular administration of a slow-releasing H2S compound (GYY-4137) on an OA experimental model. OA was induced in Wistar rats by the transection of medial collateral ligament and the removal of the medial meniscus of the left joint. The animals were randomized into three groups: non-treated and intraarticularly injected with saline or GYY-4137. Joint destabilization induced articular thickening (≈5% increment), the loss of joint mobility and flexion (≈12-degree angle), and increased levels of pain (≈1.5 points on a scale of 0 to 3). Animals treated with GYY-4137 presented improved motor function of the joint, as well as lower pain levels (≈75% recovery). We also observed that cartilage deterioration was attenuated in the GYY-4137 group (≈30% compared with the saline group). Likewise, these animals showed a reduced presence of pro-inflammatory mediators (cyclooxygenase-2, inducible nitric oxide synthase, and metalloproteinase-13) and lower oxidative damage in the cartilage. The increment of the nuclear factor-erythroid 2-related factor 2 (Nrf-2) levels and Nrf-2-regulated gene expression (≈30%) in the GYY-4137 group seem to be underlying its chondroprotective effects. Our results suggest the beneficial impact of the intraarticular administration of H2S on experimental OA, showing a reduced cartilage destruction and oxidative damage, and supporting the use of slow H2S-producing molecules as a complementary treatment in OA.


Assuntos
Artralgia/tratamento farmacológico , Sulfeto de Hidrogênio/administração & dosagem , Morfolinas/administração & dosagem , Compostos Organotiofosforados/administração & dosagem , Osteoartrite/tratamento farmacológico , Substâncias Protetoras/administração & dosagem , Animais , Cartilagem Articular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intra-Articulares , Metaloproteinase 13 da Matriz/metabolismo , Atividade Motora/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
3.
Mar Drugs ; 18(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023805

RESUMO

Osteoarthritis is the most prevalent rheumatic disease. During disease progression, differences have been described in the prevalence of chondroitin sulfate (CS) isomers. Marine derived-CS present a higher proportion of the 6S isomer, offering therapeutic potential. Accordingly, we evaluated the effect of exogenous supplementation of CS, derived from the small spotted catshark (Scyliorhinus canicula), blue shark (Prionace glauca), thornback skate (Raja clavata) and bovine CS (reference), on the proliferation of osteochondral cell lines (MG-63 and T/C-28a2) and the chondrogenic differentiation of mesenchymal stromal cells (MSCs). MG-G3 proliferation was comparable between R. clavata (CS-6 intermediate ratio) and bovine CS (CS-4 enrichment), for concentrations below 0.5 mg/mL, defined as a toxicity threshold. T/C-28a2 proliferation was significantly improved by intermediate ratios of CS-6 and -4 isomers (S. canicula and R. clavata). A dose-dependent response was observed for S. canicula (200 µg/mL vs 50 and 10 µg/mL) and bovine CS (200 and 100 µg/mL vs 10 µg/mL). CS sulfation patterns discretely affected MSCs chondrogenesis; even though S. canicula and R. clavata CS up-regulated chondrogenic markers expression (aggrecan and collagen type II) these were not statistically significant. We demonstrate that intermediate values of CS-4 and -6 isomers improve cell proliferation and offer potential for chondrogenic promotion, although more studies are needed to elucidate its mechanism of action.


Assuntos
Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Condrócitos/metabolismo , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Feminino , Humanos , Isomerismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Tubarões , Rajidae
4.
Int J Biometeorol ; 64(6): 997-1010, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31734816

RESUMO

Osteoarthritis (OA) is the most common form of arthritis and it is a leading cause of disability in the elderly. Its complete etiology is not known although there are several metabolic, genetic, epigenetic, and local contributing factors involved. At the moment, there is no cure for this pathology and treatment alternatives to retard or stop its progression are intensively being sought. Hydrogen sulfide (H2S) is a small gaseous molecule and is present in sulfurous mineral waters as its active component. Data from recent clinical trials shows that balneotherapy (immersion in mineral and/or thermal waters from natural springs) in sulfurous waters can improve OA symptoms, in particular, pain and function. Yet, the underlying mechanisms are poorly known. Hydrogen sulfide is also considered, with NO and CO, an endogenous signaling gasotransmitter. It is synthesized endogenously with the help of three enzymes, cystathionine gamma-lyase (CTH), cystathionine beta-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MPST). Here, the expression of these three enzymes was demonstrated by quantitative real-time polymerase chain reaction (qRT-PCR) and their protein abundance [by immunohistochemistry and Western blot (WB)] in human articular cartilage. No significant differences were found in CBS or CTH expression or abundance, but mRNA and protein levels of 3-MPST were significantly reduced in cartilage form OA donors. Also, the biosynthesis of H2S from OA cartilage, measured with a specific microelectrode, was significantly lower than in OA-free tissue. Yet, no differences were found in H2S concentration in serum from OA patients and OA-free donors. The current results suggest that reduced levels of the mitochondrial enzyme 3-MPST in OA cartilage might be, at least in part, responsible for a reduction in H2S biosynthesis in this tissue and that impaired H2S biosynthesis in the joint might be a contributing factor to OA. This could contribute to explain why exogenous supplementation of H2S, for instance with sulfurous thermal water, has positive effects in OA patients.


Assuntos
Sulfeto de Hidrogênio , Osteoartrite , Idoso , Cistationina beta-Sintase , Cistationina gama-Liase , Humanos
5.
Curr Pharm Biotechnol ; 20(11): 920-933, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31237204

RESUMO

BACKGROUND: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. OBJECTIVES: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. METHODS: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1ß (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1ß (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. RESULTS: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1ß and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. CONCLUSION: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Assuntos
Anti-Inflamatórios/farmacologia , Cartilagem/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Osteoartrite do Joelho/terapia , Plasma Rico em Plaquetas , Cartilagem/imunologia , Cartilagem/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/imunologia , Condrócitos/patologia , Humanos , Técnicas In Vitro , Inflamação , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite do Joelho/imunologia , Osteoartrite do Joelho/patologia , Plasma Rico em Plaquetas/citologia
6.
Ther Adv Chronic Dis ; 10: 2040622319825567, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815245

RESUMO

Platelet-rich plasma (PRP) is defined as a volume of plasma with a platelet concentration higher than the average in peripheral blood. Many basic, preclinical and even clinical case studies and trials report PRP's ability to improve musculoskeletal conditions including osteoarthritis, but paradoxically, just as many conclude it has no effect. The purpose of this narrative review is to discuss the available relevant evidence that supports the clinical use of PRP in osteoarthritis, highlighting those variables we perceive as critical. Here, recent systematic reviews and meta-analyses were used to identify the latest randomized controlled trials (RCTs) testing a PRP product as an intra-articular treatment for knee osteoarthritis, compared with an intra-articular control (mostly hyaluronic acid). Conclusions in the identified RCTs are examined and compared. In total, five recent meta-analyses and systematic reviews were found meeting the above criteria. A total of 19 individual trials were identified in the five reviews but only 9 were level of evidence I RCTs, and many had moderate or high risks of bias. At present, results from these RCTs seem to favor PRP use over other intra-articular treatments to improve pain scales in the short and medium term (6-12 months), but the overall level of evidence is low. As a result, clinical effectiveness of PRP for knee osteoarthritis treatment is still under debate. This is, prominently, the result of a lack of standardization of PRP products, scarceness of high quality RCTs not showing high risks of bias, and poor patient stratification for inclusion in the RCTs.

7.
Curr Drug Targets ; 18(14): 1641-1652, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27572743

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) and osteoarthritis (OA) are widespread rheumatic diseases characterized by persistent inflammation and joint destruction. Hydrogen sulfide (H2S) is an endogenous gas with important physiologic functions in the brain, vasculature and other organs. Recent studies have found H2S to be a mediator in inflammatory joint diseases. OBJECTIVE: This review summarizes the recent literature in this area highlighting relevant developments. CONCLUSIONS: Several authors have found that H2S exhibited anti-inflammatory, anti-catabolic and/or anti-oxidant effects in rodent models of acute arthritis and in in vitro models using human synoviocytes and articular chondrocytes from RA and OA tissues. The earliest studies used fast-dissolving salts, such as NaSH, but GYY4137, which produces H2S more physiologically, shortly appeared. More recently still, new H2S-forming compounds that target mitochondria have been synthesized. These compounds open exciting opportunities for investigating the role of H2S in cell bioenergetics, typically altered in arthritides. Positive results have also been obtained when H2S is administered as a sulphurous water bath, an option meriting further study. These findings suggest that exogenous supplementation of H2S may provide a viable therapeutic option for these diseases, particularly in OA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sulfeto de Hidrogênio/metabolismo , Morfolinas/uso terapêutico , Compostos Organotiofosforados/uso terapêutico , Osteoartrite/tratamento farmacológico , Sulfetos/uso terapêutico , Animais , Artrite Reumatoide/metabolismo , Células Cultivadas , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Osteoartrite/metabolismo , Resultado do Tratamento
8.
Eur Cell Mater ; 19: 166-79, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20419629

RESUMO

Cell-cell interactions are of crucial importance for the formation of tissues, homeostasis and regeneration processes as well as reactions on foreign bodies including implants. So far, however, the importance of heterotypic cell-cell interactions in the in vitro evaluation of implant surfaces has been largely neglected. This work aims to develop an in vitro methodology that enables the in-depth investigation of heterotypic cell-cell interactions in a mixed co-culture system, and to validate it with a primary adult human bone-derived osteoblast cells (HBCs) - abdominal fibroblasts (HAFs) system. The methodology proposed combines a simple live labelling step, semiautomated fluorescence image acquisition and analysis to characterize the interactions between different cell types (cell population dynamics) in co-culture in terms of cell proliferation and cell spatial distribution of each cell type. In this co-culture system, direct cell-cell contacts between the two cell types were permitted while the determination of cell-type specific responses could still be elucidated. We could show that HAF proliferation was reduced in a way negatively correlated with the seeding HBC/HAF ratio, i.e., a high proportion of HBC in the co-culture had an inhibitory effect on HAF proliferation. In all cultures segregation was found after 4 and 7 days of co-culture. HBCs were segregated at low ratios while HAFs were segregated at high ratios. Cell-cell distances depended on the total cell number in the co-culture but the dependence was different for each cell type.


Assuntos
Comunicação Celular , Técnicas de Cocultura/métodos , Técnicas Citológicas/métodos , Abdome , Osso e Ossos/citologia , Proliferação de Células , Fibroblastos/citologia , Humanos , Métodos , Osteoblastos/citologia , Projetos de Pesquisa
9.
Biomaterials ; 31(5): 840-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19850337

RESUMO

Calcium phosphate cement (CPC) has in situ-setting ability and bioactivity, but the brittleness and low strength limit CPC to only non-load-bearing bone repairs. Human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested without an invasive procedure required for the commonly studied bone marrow MSCs. However, little has been reported on hUCMSC delivery via bioactive scaffolds for bone tissue engineering. The objectives of this study were to develop CPC scaffolds with improved resistance to fatigue and fracture, and to investigate hUCMSC delivery for bone tissue engineering. In fast fracture, CPC with 15% chitosan and 20% polyglactin fibers (CPC-chitosan-fiber scaffold) had flexural strength of 26mPa, higher than 10mPa for CPC control (p<0.05). In cyclic loading, CPC-chitosan-fiber specimens that survived 2x10(6) cycles had the maximum stress of 10MPa, compared to 5MPa of CPC control. CPC-chitosan-fiber specimens that failed after multiple cycles had a mean stress-to-failure of 9MPa, compared to 5.8MPa for CPC control (p<0.05). hUCMSCs showed excellent viability when seeded on CPC and CPC-chitosan-fiber scaffolds. The percentage of live cells reached 96-99%. Cell density was about 300cells/mm(2) at day 1; it proliferated to 700cells/mm(2) at day 4. Wst-1 assay showed that the stronger CPC-chitosan-fiber scaffold had hUCMSC viability that matched the CPC control (p>0.1). In summary, this study showed that chitosan and polyglactin fibers substantially increased the fatigue resistance of CPC, and that hUCMSCs had excellent proliferation and viability on the scaffolds.


Assuntos
Implantes Absorvíveis , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Quitosana/química , Regeneração Tecidual Guiada/instrumentação , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Diferenciação Celular , Células Cultivadas , Força Compressiva , Sangue Fetal/citologia , Dureza , Teste de Materiais , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Resistência à Tração
10.
J Biomed Mater Res B Appl Biomater ; 84(2): 493-502, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17635038

RESUMO

Calcium phosphate cement (CPC) sets in situ and forms apatite with excellent osteoconductivity and bone-replacement capability. The objectives of this study were to formulate an injectable tetracalcium phosphate-dicalcium phosphate cement (CPC(D)), and investigate the powder/liquid ratio and needle-size effects. The injection force (mean +/- SD; n = 4) to extrude the paste increased from (8 +/- 2) N using a 10-gauge needle to (144 +/- 17) N using a 21-gauge needle (p < 0.05). With the 10-gauge needle, the mass percentage of extruded paste was (95 +/- 4)% at a powder/liquid ratio of 3; it decreased to (70 +/- 12)% at powder/liquid = 3.5 (p < 0.05). A relationship was established between injection force, F, and needle lumen cross-sectional area, A: F = 5.0 + 38.7/A(0.8). Flexural strength, S, (mean +/- SD; n = 5) increased from (5.3 +/- 0.8) MPa at powder/liquid= 2 to (11.0 +/- 0.8) MPa at powder/liquid = 3.5 (p < 0.05). Pore volume fraction, P, ranged from 62.4% to 47.9%. A relationship was established: S = 47.7 x (1 - P)(2.3). The strength of the injectable CPC(D) matched/exceeded the reported strengths of sintered porous hydroxyapatite implants that required machining. The novel injectable CPC(D) with a relatively high strength may be useful in filling defects with limited accessibility such as periodontal repair and tooth root-canal fillings, and in minimally-invasive techniques such as percutaneous vertebroplasty to fill the lesions and to strengthen the osteoporotic bone.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Injeções/instrumentação , Agulhas , Durapatita , Pós
11.
J Biomed Mater Res A ; 85(3): 674-83, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17876802

RESUMO

Six different tetracalcium phosphate (TTCP) products were synthesized by solid state reaction at high temperature by varying the overall calcium to phosphate ratio of the synthesis mixture. The objective was to evaluate the effect of the calcium to phosphate ratio on a TTCP-dicalcium phosphate dihydrate (DCPD) cement. The resulting six TTCP-DCPD cement mixtures were characterized using X-ray diffraction analysis, scanning electron microscopy, and pH measurements. Setting times and compressive strength (CS) were also measured. Using the TTCP product with a Ca/P ratio of 2.0 resulted in low strength values (25.61 MPa) when distilled water was used as the setting liquid, even though conversion to hydroxyapatite was not prevented, as confirmed by X-ray diffraction. The suspected CaO presence in this TTCP may have affected the cohesiveness of the cement mixture but not the cement setting reaction, however no direct evidence of CaO presence was found. Lower Ca/P ratio products yielded cements with CS values ranging from 46.7 MPa for Ca/P ratio of 1.90 to 38.32 MPa for Ca/P ratio of 1.85. When a dilute sodium phosphate solution was used as the setting liquid, CS values were 15.3% lower than those obtained with water as the setting liquid. Setting times ranged from 18 to 22 min when water was the cement liquid and from 7 to 8 min when sodium phosphate solution was used, and the calcium to phosphate ratio did not have a marked effect on this property.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Cálcio/análise , Fosfatos/análise , Fosfatos de Cálcio/síntese química , Força Compressiva , Teste de Materiais , Microscopia Eletrônica , Difração de Raios X
12.
Biomaterials ; 28(26): 3786-96, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17574665

RESUMO

Calcium phosphate cement (CPC) is highly promising for clinical uses due to its in situ-setting ability, excellent osteoconductivity and bone-replacement capability. However, the low strength limits its use to non-load-bearing applications. The objectives of this study were to develop a layered CPC structure by combining a macroporous CPC layer with a strong CPC layer, and to investigate the effects of porosity and layer thickness ratios. The rationale was for the macroporous layer to accept tissue ingrowth, while the fiber-reinforced strong layer would provide the needed early-strength. A biopolymer chitosan was incorporated to strengthen both layers. Flexural strength, S (mean+/-sd; n=6) of CPC-scaffold decreased from (9.7+/-1.2) to (1.8+/-0.3) MPa (p<0.05), when the porosity increased from 44.6% to 66.2%. However, with a strong-layer reinforcement, S increased to (25.2+/-6.7) and (10.0+/-1.4) MPa, respectively, at these two porosities. These strengths matched/exceeded the reported strengths of sintered porous hydroxyapatite implants and cancellous bone. Relationships were established between S and the ratio of strong layer thickness/specimen thickness, a/h:S=(17.6 a/h+3.2) MPa. The scaffold contained macropores with a macropore length (mean+/-sd; n=147) of (183+/-73) microm, suitable for cell infiltration and tissue ingrowth. Nano-sized hydroxyapatite crystals were observed to form the scaffold matrix of CPC with chitosan. In summary, a layered CPC implant, combining a macroporous CPC with a strong CPC, was developed. Mechanical strength and macroporosity are conflicting requirements. However, the novel functionally graded CPC enabled a relatively high strength and macroporosity to be simultaneously achieved. Such an in situ-hardening nano-apatite may be useful in moderate stress-bearing applications, with macroporosity to enhance tissue ingrowth and implant resorption.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Quitosana/química , Modelos Químicos , Nanoestruturas/química , Adesividade , Força Compressiva , Simulação por Computador , Cristalização/métodos , Elasticidade , Dureza , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Porosidade , Resistência à Tração
13.
Biomaterials ; 27(24): 4279-87, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16650891

RESUMO

Calcium phosphate cement (CPC) can be molded and self-hardens in vivo to form resorbable hydroxyapatite with excellent osteoconductivity. The objective of this study was to develop an injectable, macroporous and strong CPC, and to investigate the effects of porogen and absorbable fibers. Water-soluble mannitol was used as porogen and mixed with CPC at mass fractions from 0% to 50%. CPC with 0-40% mannitol was fully extruded under a syringe force of 10 N. The paste with 50% mannitol required a 100-N force which extruded only 66% of the paste. At fiber volume fraction of 0-5%, the paste was completely extruded. However, at 6% and 7.5% fibers, some fibers were left in the syringe after the paste was extruded. The injectable CPC scaffold had a flexural strength (mean+/-sd; n=5) of (3.2+/-1.0) MPa, which approached the reported strengths for sintered porous hydroxyapatite implants and cancellous bone. In summary, the injectability of a ceramic scaffold, a macroporous CPC, was studies for the first time. Processing parameters were tailored to achieve high injectability, macroporosity, and strength. The injectable and strong CPC scaffold may be useful in surgical sites that are not freely accessible by open surgery or when using minimally invasive techniques.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Fenômenos Biomecânicos , Substitutos Ósseos/administração & dosagem , Fosfatos de Cálcio/administração & dosagem , Injeções , Manitol
14.
Anal Biochem ; 350(1): 113-9, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16445883

RESUMO

Transglutaminases (TGases) are enzymes that catalyze covalent isopeptide crosslinks between reactive lysine and glutamine residues in proteins. Higher than normal local concentrations of TGase have been correlated with increased protein aggregation in vivo. These insoluble protein aggregates are the hallmark of several neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, although each aggregating protein involved is disease specific. Because TGase is implicated in protein aggregation, there is evidence that its regulation may retard disease progression. Here we report on a laser light transmission technique as an in vitro tool to gauge the efficacy of creatine, a candidate inhibitor, to regulate aggregation. Sedimentation velocities of protein-coated particles in TGase-containing water-glycerol solutions were tracked with different levels of creatine. Sedimentation velocities were converted to apparent aggregate sizes using Stoke's law of sedimentation. The results indicated that creatine promoted up to a 20% reduction in protein aggregation in vitro. This technique may prove to be useful in identifying other functional TGase inhibitors.


Assuntos
Centrifugação com Gradiente de Concentração , Creatina/farmacologia , Doenças Neurodegenerativas/fisiopatologia , Transglutaminases/metabolismo , Humanos , Lasers , Microesferas , Poliestirenos , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Espalhamento de Radiação , Transglutaminases/antagonistas & inibidores , Viscosidade
15.
J Biomed Mater Res B Appl Biomater ; 77(1): 126-34, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16184538

RESUMO

Calcium phosphate cement (CPC) sets in situ with intimate adaptation to the contours of defect surfaces, and forms an implant having a structure and composition similar to hydroxyapatite, the putative mineral in teeth and bones. The objective of the present study was to develop an injectable CPC using dicalcium phosphate dihydrate (DCPD) with a high solubility for rapid setting. Two agents were incorporated to impart injectability and fast-hardening to the cement: a hardening accelerator (sodium phosphate) and a gelling agent (hydroxypropyl methylcellulose, HPMC). The cement with DCPD was designated as CPC(D), and the conventional cement was referred to as CPC(A). Using water without sodium phosphate, CPC(A) had a setting time of 82 +/- 6 min. In contrast, CPC(D) exhibited rapid setting with a time of 17 +/- 1 min. At 0.2 mol/L sodium phosphate, setting time for CPC(D) was 15 +/- 1 min, significantly faster than 40 +/- 2 min for CPC(A) (Tukey's at 0.95). Sodium phosphate decreased the paste injectability (measured as the paste mass extruded from the syringe divided by the original paste mass inside the syringe). However, the addition of HPMC dramatically increased the paste injectability. For CPC(D), the injectability was increased from 65% +/- 12% without HPMC to 98% +/- 1% with 1% HPMC. Injectability of CPC(A) was also doubled to 99% +/- 1%. The injectable and rapid-setting CPC(D) possessed flexural strength and elastic modulus values overlapping the reported values for sintered porous hydroxyapatite implants and cancellous bone. In summary, the rapid setting and relatively high strength and elastic modulus of CPC(D) should help the graft to quickly attain strength and geometrical integrity within a short period of time postoperatively. Furthermore, the injectability of CPC(D) may have potential for procedures involving defects with limited accessibility or narrow cavities, when there is a need for precise placement of the paste, and when using minimally invasive surgical techniques.


Assuntos
Materiais Biocompatíveis/química , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Humanos , Derivados da Hipromelose , Teste de Materiais , Metilcelulose/análogos & derivados , Metilcelulose/química , Fosfatos/química , Estresse Mecânico , Propriedades de Superfície , Fatores de Tempo , Água/química
16.
J Biomed Mater Res A ; 75(4): 966-75, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16123976

RESUMO

Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite with chemical and crystallographic similarity to the apatite in human bones, hence it is highly promising for clinical applications. The objective of the present study was to develop a CPC that is fast setting and has high strength in the early stages of implantation. Two approaches were combined to impart high early strength to the cement: the use of dicalcium phosphate dihydrate with a high solubility (which formed the cement CPC(D)) instead of anhydrous dicalcium phosphate (which formed the conventional cement CPC(A)), and the incorporation of absorbable fibers. A 2 x 8 design was tested with two materials (CPC(A) and CPC(D)) and eight levels of cement reaction time: 15 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 8 h, and 24 h. An absorbable suture fiber was incorporated into cements at 25% volume fraction. The Gilmore needle method measured a hardening time of 15.8 min for CPC(D), five-fold faster than 81.5 min for CPC(A), at a powder:liquid ratio of 3:1. Scanning electron microscopy revealed the formation of nanosized rod-like hydroxyapatite crystals and platelet crystals in the cements. At 30 min, the flexural strength (mean +/- standard deviation; n = 5) was 0 MPa for CPC(A) (the paste did not set), (4.2 +/- 0.3) MPa for CPC(D), and (10.7 +/- 2.4) MPa for CPC(D)-fiber specimens, significantly different from each other (Tukey's at 0.95). The work of fracture (toughness) was increased by two orders of magnitude for the CPC(D)-fiber cement. The high early strength matched the reported strength for cancellous bone and sintered porous hydroxyapatite implants. The composite strength S(c) was correlated to the matrix strength S(m): S(c) = 2.16S(m). In summary, substantial early strength was imparted to a moldable, self-hardening and resorbable hydroxyapatite via two synergistic approaches: dicalcium phosphate dihydrate, and absorbable fibers. The new fast-setting and strong cement may help prevent catastrophic fracture or disintegration in moderate stress-bearing bone repairs.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Durapatita , Teste de Materiais , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA