Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 29(7): 2296-2308, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29856926

RESUMO

Lipidation is a powerful strategy to improve the stability in vivo of peptide drugs. Attachment of a lipid chain to a hydrophilic peptide leads to amphiphilicity and the potential for surfactant-like self-assembly. Here, the self-assembly and conformation of three lipidated derivatives of the gastrointestinal peptide hormone PYY3-36 is examined using a comprehensive range of spectroscopic, scattering, and electron microscopy methods and compared to those of the parent PYY3-36 peptide. The peptides are lipidated at Ser(11), Arg(17), or Arg(23) in the peptide; the former is within the ß-turn domain (based on the published solution NMR structure), and the latter two are both within the α-helical domain. We show that it is possible to access a remarkable diversity of nanostructures ranging from micelles to nanotapes and fibrillar hydrogels by control of assembly conditions (concentration, pH, and temperature). All of the lipopeptides self-assemble above a critical aggregation concentration (cac), determined through pyrene fluorescence probe measurements, and they all have predominantly α-helical secondary structure at their native pH. The pH and temperature dependence of the α-helical conformation were probed via circular dichroism spectroscopy experiments. Lipidation was found to provide enhanced stability against changes in temperature and pH. The self-assembled structures were investigated using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). Distinct differences in nanostructure were observed for lipidated and unlipidated peptides, also depending on the position of lipidation. Remarkably, micelles containing lipopeptides with α-helical peptide conformation were observed. Gelation was observed at higher concentrations in certain pH intervals for the lipidated peptides, but not for unlipidated PYY3-36. Thus, lipidation, in addition to enhancing stability against pH and temperature variation, also provides a route to prepare PYY peptide hydrogels. These findings provide important insights into the control of PYY3-36 conformation and aggregation by lipidation, relevant to the development of future therapeutics based on this peptide hormone, for example, in treatments for obesity.


Assuntos
Lipídeos/química , Peptídeo YY/metabolismo , Humanos , Lipopeptídeos/metabolismo , Micelas , Nanoestruturas/química , Hormônios Peptídicos/metabolismo , Peptídeos/química , Estrutura Secundária de Proteína
3.
Biomacromolecules ; 18(1): 141-149, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27983808

RESUMO

The bola-amphiphilic arginine-capped peptide RFL4RF self-assembles into nanotubes in aqueous solution. The nanostructure and rheology are probed by in situ simultaneous rheology/small-angle scattering experiments including rheo-SAXS, rheo-SANS, and rheo-GISANS (SAXS: small-angle X-ray scattering, SANS: small-angle neutron scattering, GISANS: grazing incidence small-angle neutron scattering). Nematic alignment of peptide nanotubes under shear is observed at sufficiently high shear rates under steady shear in either Couette or cone-and-plate geometry. The extent of alignment increases with shear rate. A shear plateau is observed in a flow curve measured in the Couette geometry, indicating the presence of shear banding above the shear rate at which significant orientation is observed (0.1-1 s-1). The orientation under shear is transient and is lost as soon as shear is stopped. GISANS shows that alignment at the surface of a cone-and-plate cell develops at sufficiently high shear rates, very similar to that observed in the bulk using the Couette geometry. A small isotope effect (comparing H2O/D2O solvents) is noted in the CD spectra indicating increased interpeptide hydrogen bonding in D2O, although this does not influence nanotube self-assembly. These results provide new insights into the controlled alignment of peptide nanotubes for future applications.


Assuntos
Arginina/química , Micelas , Nanotubos de Peptídeos/química , Polietilenoglicóis/química , Humanos , Reologia , Espalhamento a Baixo Ângulo , Resistência ao Cisalhamento , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA