Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(15): e17460, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963031

RESUMO

Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.


Assuntos
Fluxo Gênico , Genética Populacional , Ixodes , Animais , Ixodes/genética , Estados Unidos , Sequenciamento Completo do Genoma , Adaptação Fisiológica/genética , Variação Genética
2.
Mol Microbiol ; 121(6): 1262-1272, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38830767

RESUMO

Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.


Assuntos
Ixodes , Lagartos , Doença de Lyme , Animais , Lagartos/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Ixodes/microbiologia , Humanos , Grupo Borrelia Burgdorferi/fisiologia , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia
3.
Environ Entomol ; 53(4): 659-664, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-38850569

RESUMO

The effect of the 20th-century functional extinction of the American Chestnut (Fagaceae: Castanea dentata (Marshall) Borkh) on associated herbivorous insects is unknown. These insects include leafminers that spend at least part of their larval phase feeding between the epidermises of leaves. We surveyed leafminers on C. dentata, nonnative Castanea spp., and hybrids on Long Island, NY. We found 10 leafminer species feeding on Castanea spp. A first New York State record was documented for Stigmella castaneaefoliella (Chambers) (Lepidoptera: Nepticulidae). New host records are established for 6 lepidopterans, including a new host genus for Phyllonorycter basistrigella (Clemens) (Lepidoptera: Gracillariidae). We found no significant differences in the mean intensity of S. castaneaefoliella leaf mines on native and nonnative Castanea spp.; however, our sample size was small. Thus, we guardedly conclude that nonnative Castanea spp. can serve as refugia for C. dentata leafminers native to North America while acknowledging that the extent to which nonnative species are utilized requires further investigation.


Assuntos
Fagaceae , Herbivoria , Mariposas , Animais , New York , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Larva/crescimento & desenvolvimento , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA