Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611825

RESUMO

Glucocorticoids (GCs) act through the glucocorticoid receptor (GR) and are commonly used as anti-inflammatory and immunosuppressant medications. Chronic GC use has been linked with unwanted complications such as steroid-induced diabetes mellitus (SIDM), although the mechanisms for these effects are not completely understood. Modification of six GC parent molecules with 2-mercaptobenzothiazole resulted in consistently less promoter activity in transcriptional activation assays using a 3xGRE reporter construct while constantly reducing inflammatory pathway activity. The most selective candidate, DX1, demonstrated a significant reduction (87%) in transactivation compared to commercially available dexamethasone. DX1 also maintained 90% of the anti-inflammatory potential of dexamethasone while simultaneously displaying a reduced toxicity profile. Additionally, two novel and highly potent compounds, DX4 and PN4, were developed and shown to elicit similar mRNA expression at attomolar concentrations that dexamethasone exhibits at nanomolar dosages. To further explain these results, Molecular Dynamic (MD) simulations were performed to examine structural changes in the ligand-binding domain of the glucocorticoid receptor in response to docking with the top ligands. Differing interactions with the transcriptional activation function 2 (AF-2) region of the GR may be responsible for lower transactivation capacity in DX1. DX4 and PN4 lose contact with Arg611 due to a key interaction changing from a stronger hydrophilic to a weaker hydrophobic one, which leads to the formation of an unoccupied channel at the location of the deacylcortivazol (DAC)-expanded binding pocket. These findings provide insights into the structure-function relationships important for regulating anti-inflammatory activity, which has implications for clinical utility.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/farmacologia , Ligantes , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia
2.
Diabetes Obes Metab ; 26(6): 2158-2166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433703

RESUMO

AIM: Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS: Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS: NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION: Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.


Assuntos
Diabetes Mellitus Tipo 1 , Dieta Hiperlipídica , Hiperglicemia , Camundongos Endogâmicos NOD , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Camundongos , Hiperglicemia/etiologia , Intolerância à Glucose/etiologia , Metabolismo Energético , Fígado/metabolismo , Dieta com Restrição de Gorduras , Insulina/metabolismo , Insulina/sangue , Glicemia/metabolismo
3.
Am J Physiol Endocrinol Metab ; 325(4): E336-E345, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610410

RESUMO

Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.


Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Ilhotas Pancreáticas , Camundongos , Feminino , Animais , Camundongos Endogâmicos NOD , Camundongos Endogâmicos ICR , Proinsulina , Diabetes Mellitus Tipo 1/genética , Complexo Principal de Histocompatibilidade , Hiperglicemia/genética
4.
Autoimmun Rev ; 22(10): 103414, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619906

RESUMO

Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet ß-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet ß-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the ß2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet ß-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.


Assuntos
Autoimunidade , Rejeição de Enxerto , Molécula 1 de Adesão Intercelular , Ilhotas Pancreáticas , Animais , Humanos , Camundongos , Insulinas , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/metabolismo , Camundongos Endogâmicos NOD
5.
Trends Endocrinol Metab ; 34(11): 764-777, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633800

RESUMO

Lysosomes are cellular organelles that function to catabolize both extra- and intracellular cargo, act as a platform for nutrient sensing, and represent a core signaling node integrating bioenergetic cues to changes in cellular metabolism. Although lysosomal amino acid and lipid sensing in metabolism has been well characterized, lysosomal glucose sensing and the role of lysosomes in glucose metabolism is unrefined. This review will highlight the role of the lysosome in glucose metabolism with a focus on lysosomal glucose and glycogen sensing, glycophagy, and lysosomal glucose transport and how these processes impact autophagy and energy metabolism. Additionally, the role of lysosomal glucose metabolism in genetic and metabolic diseases will be briefly discussed.


Assuntos
Autofagia , Lisossomos , Humanos , Lisossomos/metabolismo , Glicogênio/metabolismo , Glucose/metabolismo , Metabolismo Energético
6.
Mol Metab ; 74: 101751, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295745

RESUMO

OBJECTIVE: Glucocorticoids are one of the most commonly prescribed classes of anti-inflammatory drugs; however, chronic treatment promotes iatrogenic (drug-induced) diabetes. As part of their physiological role, glucocorticoids stimulate lipolysis to spare glucose. We hypothesized that persistent stimulation of lipolysis during glucocorticoid therapy plays a causative role in the development of iatrogenic diabetes. METHODS: Male C57BL/6J mice were given 100 µg/mL corticosterone (Cort) in the drinking water for two weeks and were fed either normal chow (TekLad 8640) or the same diet supplemented with an adipose triglyceride lipase inhibitor (Atglistatin - 2  g/kg diet) to inhibit the first step of lipolysis. RESULTS: Herein, we report for the first time that glucocorticoid administration promotes a unique state of substrate excess and energetic overload in skeletal muscle that primarily results from the rampant mobilization of endogenous fuels. Inhibiting lipolysis protected mice from Cort-induced gains in fat mass, excess ectopic lipid accrual, hyperinsulinemia, and hyperglycemia. The role lipolysis plays in Cort-mediated pathology appears to differ between tissues. Within skeletal muscle, Cort-induced lipolysis facilitated diversion of glucose-derived carbons toward the pentose phosphate and hexosamine biosynthesis pathways but contributed to <3% of the Cort-induced genomic adaptations. In contrast, Cort stimulation of lipolysis accounted for ∼35% of the genomic changes in the liver but had minimal impact on hepatic metabolites reported. CONCLUSIONS: These data support the idea that activation of lipolysis plays a causal role in the progression toward iatrogenic diabetes during glucocorticoid therapy with differential impact on skeletal muscle and liver.


Assuntos
Glucocorticoides , Resistência à Insulina , Masculino , Camundongos , Animais , Glucocorticoides/metabolismo , Lipólise/genética , Camundongos Endogâmicos C57BL , Corticosterona/farmacologia , Glucose/metabolismo , Doença Iatrogênica
7.
ACS Med Chem Lett ; 13(9): 1493-1499, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36105346

RESUMO

Glucocorticoids (GCs) are heavily prescribed to control inflammation in various human diseases; however, side effects associated with GCs are well documented and lead to serious metabolic and immunological complications with long-term use. The paradigm for GC function includes two well described modes of activity: dimer formation of the glucocorticoid receptor (GR) promotes transactivation, while monomeric interaction with co-regulators promotes transrepression. Previously, a set of aryl pyrazole-derived glucocorticoid receptor agonists (APGRAs) with potency rivaling current commercially available glucocorticoids were described. In this study, a further series of existing and novel stereopure APGRAs were thoroughly examined for biological activity and evaluated for structure-activity relationships (SARs). The si isomers with an upward OH moiety were ∼70% more active on average than the re isomers. Additionally, AP13 was found to elicit 79% transrepression of dexamethasone while eliciting less than half the transactivation response in 832/13 cells, a rat insulinoma cell line.

8.
Biomedicines ; 10(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140178

RESUMO

Laminins are heterotrimeric glycoproteins with structural and functional roles in basement membranes. The predominant laminin alpha chain found in adipocyte basement membranes is laminin α4 (LAMA4). Global LAMA4 deletion in mice leads to reduced adiposity and increased energy expenditure, but also results in vascular defects that complicate the interpretation of metabolic data. Here, we describe the generation and initial phenotypic analysis of an adipocyte-specific LAMA4 knockout mouse (Lama4AKO). We first performed an in-silico analysis to determine the degree to which laminin α4 was expressed in human and murine adipocytes. Next, male Lama4AKO and control mice were fed chow or high-fat diets and glucose tolerance was assessed along with serum insulin and leptin levels. Adipocyte area was measured in both epididymal and inguinal white adipose tissue (eWAT and iWAT, respectively), and eWAT was used for RNA-sequencing. We found that laminin α4 was highly expressed in human and murine adipocytes. Further, chow-fed Lama4AKO mice are like control mice in terms of body weight, body composition, and glucose tolerance, although they have larger eWAT adipocytes and lower insulin levels. High-fat-fed Lama4AKO mice are fatter and more glucose tolerant when compared to control mice. Transcriptionally, the eWAT of high-fat fed Lama4AKO mice resembles that of chow-fed control mice. We conclude from these findings that adipocyte-specific LAMA4 deletion is protective in an obesogenic environment, even though overall adiposity is increased.

9.
Biomedicines ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35884776

RESUMO

This Biomedicines Special Issue was designed to attract articles that focused on different facets of biology relating to insulin resistance, defined as reduced cellular and organismal response to the insulin hormone, and its underlying mechanisms [...].

10.
J Immunol ; 209(3): 569-581, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851539

RESUMO

Type 1 diabetes (T1D) is classified as an autoimmune disease where pancreatic ß-cells are specifically targeted by cells of the immune system. The molecular mechanisms underlying this process are not completely understood. Herein, we identified that the Icam1 gene and ICAM-1 protein were selectively elevated in female NOD mice relative to male mice, fitting with the sexual dimorphism of diabetes onset in this key mouse model of T1D. In addition, ICAM-1 abundance was greater in hyperglycemic female NOD mice than in age-matched normoglycemic female NOD mice. Moreover, we discovered that the Icam1 gene was rapidly upregulated in response to IL-1ß in mouse, rat, and human islets and in 832/13 rat insulinoma cells. This early temporal genetic regulation requires key components of the NF-κB pathway and was associated with rapid recruitment of the p65 transcriptional subunit of NF-κB to corresponding κB elements within the Icam1 gene promoter. In addition, RNA polymerase II recruitment to the Icam1 gene promoter in response to IL-1ß was consistent with p65 occupancy at κB elements, histone chemical modifications, and increased mRNA abundance. Thus, we conclude that ß-cells undergo rapid genetic reprogramming by IL-1ß to enhance expression of the Icam1 gene and that elevations in ICAM-1 are associated with hyperglycemia in NOD mice. These findings are highly relevant to, and highlight the importance of, pancreatic ß-cell communication with the immune system. Collectively, these observations reveal a portion of the complex molecular events associated with onset and progression of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Células Secretoras de Insulina , Molécula 1 de Adesão Intercelular , NF-kappa B , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos NOD , NF-kappa B/genética , NF-kappa B/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo
11.
Biomolecules ; 12(5)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35625635

RESUMO

Non-resolving pancreatic islet inflammation is widely viewed as a contributor to decreases in ß-cell mass and function that occur in both Type 1 and Type 2 diabetes. Therefore, strategies aimed at reducing or eliminating pathological inflammation would be useful to protect islet ß-cells. Herein, we described the use of 2',4'-dihydroxy-4-methoxydihydrochalcone (DMC2), a bioactive molecule isolated from an ethanolic extract of Artemisia dracunculus L., as a novel anti-inflammatory agent. The ethanolic extract, termed PMI 5011, reduced IL-1ß-mediated NF-κB activity. DMC2 retained this ability, indicating this compound as the likely source of anti-inflammatory activity within the overall PMI 5011 extract. We further examined NF-κB activity using promoter-luciferase reporter constructs, Western blots, mRNA abundance, and protein secretion. Specifically, we found that PMI 5011 and DMC2 each reduced the ability of IL-1ß to promote increases in the expression of the Ccl2 and Ccl20 genes. These genes encode proteins that promote immune cell recruitment and are secreted by ß-cells in response to IL-1ß. Phosphorylation of IκBα and the p65 subunit of NF-κB were not reduced by either PMI 5011 or DMC2; however, phosphorylation of p38 MAPK was blunted in the presence of DMC2. Finally, we observed that while PMI 5011 impaired glucose-stimulated insulin secretion, insulin output was preserved in the presence of DMC2. In conclusion, PMI 5011 and DMC2 reduced inflammation, but only DMC2 did so with the preservation of glucose-stimulated insulin secretion.


Assuntos
Artemisia , Diabetes Mellitus Tipo 2 , Glucose , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Nat Commun ; 13(1): 1897, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393401

RESUMO

Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice. Conversely, mice lacking FGF21 fail to exhibit metabolic responses to protein restriction in early life, and in later life exhibit early onset of age-related weight loss, reduced physical performance, increased frailty, and reduced lifespan. These data demonstrate that protein restriction in aging male mice exerts marked beneficial effects on lifespan and metabolic health and that a single metabolic hormone, FGF21, is essential for the anti-aging effect of this dietary intervention.


Assuntos
Fatores de Crescimento de Fibroblastos , Fragilidade , Longevidade , Animais , Dieta com Restrição de Proteínas , Fatores de Crescimento de Fibroblastos/metabolismo , Fragilidade/metabolismo , Hormônios/metabolismo , Fígado/metabolismo , Masculino , Camundongos
13.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35230975

RESUMO

The importance of healthy mitochondrial function is implicated in the prevention of chronic kidney disease (CKD) and diabetic kidney disease (DKD). Sex differences also play important roles in DKD. Our previous studies revealed that mitochondrial substrate overload (modeled by homozygous deletion of carnitine acetyl-transferase [CrAT]) in proximal tubules causes renal injury. Here, we demonstrate the importance of intact mitochondrial substrate efflux by titrating the amount of overload through the generation of a heterozygous CrAT-KO model (PT-CrATHET mouse). Intriguingly, these animals developed renal injury similarly to their homozygous counterparts. Mitochondria were structurally and functionally impaired in both sexes. Transcriptomic analyses, however, revealed striking sex differences. Male mice shut down fatty acid oxidation and several other metabolism-related pathways. Female mice had a significantly weaker transcriptional response in metabolism, but activation of inflammatory pathways was prominent. Proximal tubular cells from PT-CrATHET mice of both sexes exhibited a shift toward a more glycolytic phenotype, but female mice were still able to oxidize fatty acid-based substrates. Our results demonstrate that maintaining mitochondrial substrate metabolism balance is crucial to satisfying proximal tubular energy demand. Our findings have potentially broad implications, as both the glycolytic shift and the sexual dimorphisms discovered herein offer potentially new modalities for future interventions for treating kidney disease.


Assuntos
Nefropatias Diabéticas , Mitocôndrias , Animais , Nefropatias Diabéticas/metabolismo , Ácidos Graxos/metabolismo , Feminino , Homozigoto , Masculino , Camundongos , Mitocôndrias/metabolismo , Deleção de Sequência
14.
ACS Med Chem Lett ; 12(10): 1568-1577, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34676039

RESUMO

Glucocorticoids (GCs) are widely used in medicine for their role in the treatment of autoimmune-mediated conditions, certain cancers, and organ transplantation. The transcriptional activities GCs elicit include transrepression, postulated to be responsible for the anti-inflammatory activity, and transactivation, proposed to underlie the undesirable side effects associated with long-term use. A GC analogue that could elicit only transrepression and beneficial transactivation properties would be of great medicinal value and is highly sought after. In this study, a series of 1-(4-substituted phenyl)pyrazole-based GC analogues were synthesized, biologically screened, and evaluated for SARs leading to the desired activity. Activity observed in compounds bearing an electron deficient arylpyrazole moiety showed promise toward a dissociated steroid, displaying transrepression while having limited transactivation activity. In addition, compounds 11aa and 11ab were found to have anti-inflammatory efficacy comparable to that of dexamethasone at 10 nM, with minimal transactivation activity and no reduction of insulin secretion in cultured rat 832/13 beta cells.

15.
Biomedicines ; 9(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572374

RESUMO

Obesity, insulin resistance, and type 2 diabetes contribute to increased morbidity and mortality in humans. The db/db mouse is an important mouse model that displays many key features of the human disease. Herein, we used the drug pioglitazone, a thiazolidinedione with insulin-sensitizing properties, to investigate blood glucose levels, indicators of islet ß-cell health and maturity, and gene expression in adipose tissue. Oral administration of pioglitazone lowered blood glucose levels in db/db mice with a corresponding increase in respiratory quotient, which indicates improved whole-body carbohydrate utilization. In addition, white adipose tissue from db/db mice and from humans treated with pioglitazone showed increased expression of glycerol kinase. Both db/db mice and humans given pioglitazone displayed increased expression of UCP-1, a marker typically associated with brown adipose tissue. Moreover, pancreatic ß-cells from db/db mice treated with pioglitazone had greater expression of insulin and Nkx6.1 as well as reduced abundance of the de-differentiation marker Aldh1a3. Collectively, these findings indicate that four weeks of pioglitazone therapy improved overall metabolic health in db/db mice. Our data are consistent with published reports of human subjects administered pioglitazone and with analysis of human adipose tissue taken from subjects treated with pioglitazone. In conclusion, the current study provides evidence that pioglitazone restores key markers of metabolic health and also showcases the utility of the db/db mouse to understand mechanisms associated with human metabolic disease and interventions that provide therapeutic benefit.

16.
Chem Sci ; 12(16): 5853-5864, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168810

RESUMO

Despite being relatively benign and not an indicative signature of toxicity, fibril formation and fibrillar structures continue to be key factors in assessing the structure-function relationship in protein aggregation diseases. The inability to capture molecular cross-talk among key players at the tissue level before fibril formation greatly accounts for the missing link toward the development of an efficacious therapeutic intervention for Type II diabetes mellitus (T2DM). We show that human α-calcitonin gene-related peptide (α-CGRP) remodeled amylin fibrillization. Furthermore, while CGRP and/or amylin monomers reduce the secretion of both mouse Ins1 and Ins2 proteins, CGRP oligomers have a reverse effect on Ins1. Genetically reduced Ins2, the orthologous version of human insulin, has been shown to enhance insulin sensitivity and extend the life-span in old female mice. Beyond the mechanistic insights, our data suggest that CGRP regulates insulin secretion and lowers the risk of T2DM. Our result rationalizes how migraine might be protective against T2DM. We envision the new paradigm of CGRP : amylin interactions as a pivotal aspect for T2DM diagnostics and therapeutics. Maintaining a low level of amylin while increasing the level of CGRP could become a viable approach toward T2DM prevention and treatment.

17.
Metabolites ; 11(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525362

RESUMO

This special issue was commissioned to offer a source of distinct viewpoints and novel data that capture some of the subtleties of the pancreatic islet, especially in relation to adaptive changes that influence metabolic homeostasis [...].

18.
SN Compr Clin Med ; 3(12): 2465-2491, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35098034

RESUMO

Diabetes mellitus is a major public health problem worldwide. This endocrine disease is clustered into distinct subtypes based on the route of development, with the most common forms associated with either autoimmunity (T1DM) or obesity (T2DM). A shared hallmark of both major forms of diabetes is a reduction in function (insulin secretion) or mass (cell number) of the pancreatic islet beta-cell. Diminutions in both mass and function are often present. A wide assortment of plants have been used historically to reduce the pathological features associated with diabetes. In this review, we provide an organized viewpoint focused around the phytochemicals and herbal extracts investigated using various preclinical and clinical study designs. In some cases, crude extracts were examined directly, and in others, purified compounds were explored for their possible therapeutic efficacy. A subset of these studies compared the botanical product with standard of care prescribed drugs. Finally, we note that botanical formulations are likely suspects for future drug discovery and refinement into class(es) of compounds that have either direct or adjuvant therapeutic benefit.

19.
Mol Metab ; 44: 101140, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285301

RESUMO

OBJECTIVE: The expression of the interleukin-1 receptor type I (IL-1R) is enriched in pancreatic islet ß-cells, signifying that ligands activating this pathway are important for the health and function of the insulin-secreting cell. Using isolated mouse, rat, and human islets, we identified the cytokine IL-1α as a highly inducible gene in response to IL-1R activation. In addition, IL-1α is elevated in mouse and rat models of obesity and Type 2 diabetes. Since less is known about the biology of IL-1α relative to IL-1ß in pancreatic tissue, our objective was to investigate the contribution of IL-1α to pancreatic ß-cell function and overall glucose homeostasis in vivo. METHODS: We generated a novel mouse line with conditional IL-1α alleles and subsequently produced mice with either pancreatic- or myeloid lineage-specific deletion of IL-1α. RESULTS: Using this in vivo approach, we discovered that pancreatic (IL-1αPdx1-/-), but not myeloid-cell, expression of IL-1α (IL-1αLysM-/-) was required for the maintenance of whole body glucose homeostasis in both male and female mice. Moreover, pancreatic deletion of IL-1α led to impaired glucose tolerance with no change in insulin sensitivity. This observation was consistent with our finding that glucose-stimulated insulin secretion was reduced in islets isolated from IL-1αPdx1-/- mice. Alternatively, IL-1αLysM-/- mice (male and female) did not have any detectable changes in glucose tolerance, respiratory quotient, physical activity, or food intake when compared with littermate controls. CONCLUSIONS: Taken together, we conclude that there is an important physiological role for pancreatic IL-1α to promote glucose homeostasis by supporting glucose-stimulated insulin secretion and islet ß-cell mass in vivo.


Assuntos
Glucose/metabolismo , Homeostase , Secreção de Insulina/fisiologia , Interleucina-1alfa/metabolismo , Células Mieloides/metabolismo , Pâncreas/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Intolerância à Glucose/metabolismo , Proteínas de Homeodomínio , Inflamação , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Ratos , Receptores de Citocinas , Receptores Tipo I de Interleucina-1/metabolismo , Transativadores
20.
Obesity (Silver Spring) ; 28(9): 1726-1735, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32741148

RESUMO

OBJECTIVE: An ethanolic extract of Artemisia scoparia (SCO) improves adipose tissue function and reduces negative metabolic consequences of high-fat feeding. A. scoparia has a long history of medicinal use across Asia and has anti-inflammatory effects in various cell types and disease models. The objective of the current study was to investigate SCO's effects on inflammation in cells relevant to metabolic health. METHODS: Inflammatory responses were assayed in cultured adipocytes, macrophages, and insulinoma cells by quantitative polymerase chain reaction, immunoblotting, and NF-κB reporter assays. RESULTS: In tumor necrosis factor α-treated adipocytes, SCO mitigated ERK and NF-κB signaling as well as transcriptional responses but had no effect on fatty acid-binding protein 4 secretion. SCO also reduced levels of deleted in breast cancer 1 protein in adipocytes and inhibited inflammatory gene expression in stimulated macrophages. Finally, in pancreatic ß-cells, SCO decreased NF-κB-responsive promoter activity induced by IL-1ß treatment. CONCLUSIONS: SCO's ability to promote adipocyte development and function is thought to mediate its insulin-sensitizing actions in vivo. Our findings that SCO inhibits inflammatory responses through at least two distinct signaling pathways (ERK and NF-κB) in three cell types known to contribute to metabolic disease reveal that SCO may act more broadly than previously thought to improve metabolic health.


Assuntos
Adipócitos/metabolismo , Anti-Inflamatórios/uso terapêutico , Artemisia/química , Inflamação/tratamento farmacológico , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Scoparia/química , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...