Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10557-10567, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787802

RESUMO

The Zintl phase CaSi2 is a layered compound with stacking variants known as 1P, 3R, and 6R. We extend the series by the 21R polytype formed by rapid cooling of the melt. The crystal structure of 21R-CaSi2 (space group R3̅m) was derived from HRTEM images, and the atomic positions were optimized by using the FPLO code (a = 3.868 Å, c = 107.276 Å). We explore polytype transformations by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron backscattering diffraction (EBSD), and thermal analysis. While 6R-CaSi2 is thermodynamically stable at ambient conditions, nanosized impurities of silicon stabilize 3R-CaSi2 as a bulk phase.

2.
Dalton Trans ; 53(13): 5827-5835, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465767

RESUMO

LiCa8[CrIVN3]2N2F (Pnnm (#58), a = 17.5230(13) Å, b = 7.3379(5) Å, c = 4.9433(4) Å) is an example of a multinary nitridochromate fluoride, that provides additional information on almost elusive tetravalent nitridochromates. Shorter Cr-N bond lengths compared to those in the previously reported nitridochromates(III), as well as diamagnetic behavior and vibrational spectroscopy data suggest Cr(IV), which is in good agreement with the charge balance and crystal structure refinement. According to band structure calculations, LiCa8[CrIVN3]2N2F is a semiconductor with a band gap of 1.1 eV. The compound features trigonal planar [CrN3]5- units of Cs symmetry, and lithium, calcium, nitrogen and fluorine atoms arranged in a fragment of the rock salt type structure.

3.
Nat Commun ; 15(1): 1467, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368411

RESUMO

The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.

4.
Commun Biol ; 6(1): 1241, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066075

RESUMO

Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.


Assuntos
Invertebrados , Solo , Humanos , Animais , Invertebrados/genética , Biodiversidade , Ecologia , Genômica
5.
Phys Chem Chem Phys ; 25(45): 31137-31145, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947387

RESUMO

Intermetallic compounds in the Al-Pt system were systematically studied via hard X-ray photoelectron spectroscopy, focusing on the positions of Pt 4f and Al 2s core levels and valence band features. On one hand, with increasing Al content, the Pt 4f core levels shift towards higher binding energies (BE), revealing the influence of the atomic interactions (chemical bonding) on the electronic state of Pt. On the other hand, the charge transfer from Al to Pt increases with increasing Al content in Al-Pt compounds. These two facts cannot be combined using the standard "chemical shift" approach. Computational analysis reveals that higher negative effective charges of Pt atoms are accompanied by reduced occupancy of Pt 5d orbitals, leading to the limited availability of these electrons for the screening of the 4f core hole and this in turn explains the experimentally observed shift of 4f core levels to higher BE.

6.
Chemistry ; 29(72): e202302301, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740670

RESUMO

During the investigation of the binary system Be-Ru two new phases - Be7 Ru4 and Be12 Ru7 - with similar compositions (63.6 at. % Be and 63.2 at. % Be, respectively), are discovered. They both represent new structural prototypes. The phases are located between Be2 Ru (Fe2 P-type structure) and Be3 Ru2 (U3 Si2 -type structure) in the phase diagram. This explains why their crystal structures, solved and refined from single crystal X-ray diffraction data, are described as 2D intergrowth of Fe2 P and U3 Si2 motives. The calculated electronic density of stats (DOS) reveals pronounced minima in the vicinity of the Fermi level for both compounds. Position-space analysis of chemical bonding exhibits the formation of three- and four-atomic polar bonds, involving both, Ru and Be, atoms, and a strong charge transfer from Be to the more electronegative Ru.

7.
Inorg Chem ; 62(23): 9054-9062, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37227413

RESUMO

Na2Ga7 crystallizes with the orthorhombic space group Pnma (no. 62; a = 14.8580(6) Å, b = 8.6766(6) Å, and c = 11.6105(5) Å; Z = 8) and constitutes a filled variant of the Li2B12Si2 structure type. The crystal structure consists of a network of icosahedral Ga12 units with 12 exohedral bonds and four-bonded Ga atoms in which the Na atoms occupy the channels and cavities. The atomic arrangement is consistent with the Zintl [(4b)Ga]- and Wade [(12b)Ga12]2- electron counting approach. The compound forms peritectically from Na7Ga13 and the melt at 501 °C and does not show a homogeneity range. The band structure calculations predict semiconducting behavior consistent with the electron balance [Na+]4[(Ga12)2-][Ga-]2. Magnetic susceptibility measurements show that Na2Ga7 is diamagnetic.

8.
Dalton Trans ; 52(30): 10310-10322, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221973

RESUMO

Clathrate phases with crystal structures exhibiting complex disorder have been the subject of many prior studies. Here we report syntheses, crystal and electronic structure, and chemical bonding analysis of a Li-substituted Ge-based clathrate phase with the refined chemical formula Ba8Li5.0(1)Ge41.0, which is a rare example of ternary clathrate-I where alkali metal atoms substitute framework Ge atoms. Two different synthesis methods to grow single crystals of the new clathrate phase are presented, in addition to the classical approach towards polycrystalline materials by combining pure elements in desired stoichiometric ratios. Structure elucidations for samples from different batches were carried out by single-crystal and powder X-ray diffraction methods. The ternary Ba8Li5.0(1)Ge41.0 phase crystallizes in the cubic type-I clathrate structure (space group Pm3̄n no. 223, a ≈ 10.80 Å), with the unit cell being substantially larger compared to the binary phase Ba8Ge43 (Ba8□3Ge43, a ≈ 10.63 Å). The expansion of the unit cell is the result of the Li atoms filling vacancies and substituting atoms in the Ge framework, with Li and Ge co-occupying one crystallographic (6c) site. As such, the Li atoms are situated in four-fold coordination environment surrounded by equidistant Ge atoms. Analysis of chemical bonding applying the electron density/electron localizability approach reveals ionic interaction of barium with the Li-Ge framework, while the lithium-germanium bonds are strongly polar covalent.

9.
Chemistry ; 29(33): e202300578, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36916324

RESUMO

The structural features of the hexagonal layered crystal structure of Be2 Ru (a=5.7508(3) Å, c=3.0044(2) Å, space group P 6 ‾ ${\bar{6}}$ 2m) were investigated by single crystal X-ray diffraction and transmission electron microscopy (TEM). The residual electron density and high-resolution TEM images show that the real structure can be described as an intergrowth of the main hexagonal matrix of the Fe2 P type with minor orthorhombic inclusions of its stacking variants. Such atomic arrangement is stabilized by the charge transfer from Be to Ru and by a system of polar three- and four-atomic bonds involving both components. The calculated electronic density of states (DOS) of Be2 Ru revealed, contrarily to typical intermetallic compounds, a pseudo gap (dip) in the vicinity of the Fermi level. The temperature dependence of the electrical resistivity of Be2 Ru shows metal behaviour in agreement with the non-zero DOS at the Fermi level.


Assuntos
Eletricidade , Cristalografia por Raios X , Microscopia Eletrônica de Transmissão , Temperatura
10.
Inorg Chem ; 62(11): 4688-4695, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36892553

RESUMO

The isostructural region (Sn,Pb,Bi)Pt has been established over a wide range of the quasi-ternary section of the quaternary phase diagram. A synthesis protocol was developed, and single-phase compounds were thoroughly characterized, revealing linear relationships between the volume of the unit cell and the substitution degree for the NiAs type of crystal structure. Together with the already established (Pb,Bi)Pt series, the isostructural cut at 50 atom % Pt forms an ideal platform to independently investigate the influence of electronic and structural properties for physical and chemical applications, such as electrocatalysis. The three binary endmembers SnPt, PbPt, and BiPt are active materials in a variety of electrocatalytic oxidation and reduction reactions such as methanol oxidation and oxygen reduction, respectively. By gradual substitution, a fully independent tuning of interatomic distances and electronic densities can be achieved without altering the crystal structure. This unique adaptability is gated behind the requirement of extended homogeneity ranges of at least quaternary intermetallic compounds. Here, we present this new platform for systematic investigations in (electro) catalysis.

11.
Inorg Chem ; 61(49): 19695-19701, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36445813

RESUMO

In the phase diagram U-Cd, only one compound has been identified so far─UCd11 (space group Pm3̅m). Since the discovery of this material, the physical properties of UCd11 have attracted a considerable amount of attention. In particular, its complex magnetic phase diagram─as a result of tuning with magnetic field or pressure─is not well-understood. From a chemical perspective, a range of lattice parameter values have been reported, suggesting a possibility of a considerable homogeneity range, i.e., UCd11-x. In this work, we perform a simultaneous study of crystallographic features coupled with measurements of physical properties. This work sheds light on the delicate relationship between the intrinsic crystal chemistry and magnetic properties of UCd11.


Assuntos
Campos Magnéticos
12.
Inorg Chem ; 61(40): 16148-16155, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36166747

RESUMO

Mg29-xPt4+y represents the family of complex intermetallic compounds (complex metallic alloys, CMAs). It crystallizes in the cubic non-centrosymmetric space group F4̅3m with a = 20.1068(2) Šand around 400 atoms in a predominantly ordered arrangement. The local disorder around the unit cell origin is experimentally resolved by single-crystal X-ray diffraction in combination with atomic-resolution transmission electron microscopy (TEM, high-angle dark-field scanning TEM) studies. The quantum theory of atoms in molecules-based analysis of atomic charges shows that the unusual mixed Mg/Pt site occupation around the origin results from local charge equilibration in this region of the crystal structure. Chemical bonding analysis reveals for Mg29-xPt4+y─rather unexpected for a crystal structure of this size─space-separated regions of hetero- and homoatomic bonds involving three to six partners (bonding inhomogeneity). Pt-containing 11- and 13-atomic units formed by heteroatomic 3a-, 4a-, and 5a-bonds are condensed via edges and faces to large super-tetrahedrons, which are interlinked by Mg-only 6a-bonds. Spatial separation of the regions with different bonding features is the key difference between the title compound and other CMAs, which are characterized by a predominantly homogeneous distribution of heteroatomic bonds.

13.
Nanoscale ; 14(28): 10067-10074, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35791918

RESUMO

Band structure engineering has a strong beneficial impact on thermoelectric performance, where theoretical methods dominate the investigation of electronic structures. Here, we use angle-resolved photoemission spectroscopy (ARPES) to analyze the electronic structure and report on the thermoelectric transport properties of half-Heusler TiCoSb high-quality single crystals. High degeneracy of the valence bands at the L and Γ band maximum points was observed, which provides a band-convergence scenario for the thermoelectric performance of TiCoSb. Previous efforts have shown how crystallographic defects play an important role in TiCoSb transport properties, while the intrinsic properties remain elusive. Using hard X-ray photoelectron spectroscopy (HAXPES), we discard the presence of interstitial defects that could induce in-gap states near the valence band in our crystals. Contrary to polycrystalline reports, intrinsic TiCoSb exhibits p-type transport, albeit defects still affect the carrier concentration. In two initially identical p-type TiCoSb crystal batches, distinct metallic and semiconductive behaviors were found owing to defects not noticeable by elemental analysis. A varying Seebeck effective mass is consistent with the change at the Fermi level within this band convergence picture. This report tackles the direct investigation of the electronic structure of TiCoSb and reveals new insights and the strong impact of point defects on the optimization of thermoelectric properties.

14.
ChemistryOpen ; 11(6): e202200118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35726898

RESUMO

The new phase Be3 Ru crystallizes with TiCu3 -type structure (space group Pmmn (59), a=3.7062(1) Å, b=4.5353(1) Å, c=4.4170(1) Å), a coloring variant of the hexagonal closest packing (hcp) of spheres. The electronic structure revealed that Be3 Ru has a pseudo-gap close to the Fermi level. A strong charge transfer from Be to Ru was observed from the analysis of electron density within the Quantum Theory of Atoms in Molecules (QTAIM) framework and polar three- and four-atomic Be-Ru bonds were observed from the ELI-D (electron localizability indicator) analysis. This situation is very similar to the recently investigated Be5 Pt and Be21 Pt5 compounds. The unusual crystal chemical feature of Be3 Ru is that different charged species belong to the same closest packing, contrary to typical inorganic compounds, where the cationic components are located in the voids of the closest packing formed by anions. Be3 Ru is a diamagnet displaying metallic electrical resistivity.

15.
ACS Mater Au ; 2(1): 45-54, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36855699

RESUMO

The compound IrGa3 was synthesized by direct reaction of the elements. It is formed as a high-temperature phase in the Ir-Ga system. Single-crystal X-ray diffraction analysis confirms the tetragonal symmetry (space group P42 /mnm, No. 136) with a = 6.4623(1) Å and c = 6.5688(2) Å and reveals strong disorder in the crystal structure, reflected in the huge values and anisotropy of the atomic displacement parameters. A model for the real crystal structure of ht-IrGa3 is derived by the split-position approach from the single-crystal X-ray diffraction data and confirmed by an atomic-resolution transmission electron microscopy study. Temperature-dependent electrical resistivity measurements evidence semiconductor behavior with a band gap of 30 meV. A thermoelectric characterization was performed for ht-IrGa3 and for the solid solution IrGa3-x Zn x .

16.
Inorg Chem ; 60(17): 13681-13690, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34428036

RESUMO

The binary phase Mg3Pt2 was prepared by direct reaction between the elements or by spark-plasma synthesis starting with MgH2 and PtCl2. The compound crystallizes in the monoclinic space group C2/c with a = 7.2096(3) Å, b = 7.1912(4) Å, c = 6.8977(3) Å, and ß = 106.072(3)° and is isotypic to Eu3Ga2. Analysis of the electron density within the quantum theory of atoms in molecules shows a significant charge transfer from Mg to Pt in agreement with the electronegativity difference. Further study of the chemical bonding with the electron localizability approach reveals the formation of Pt chains stabilized by a complex system of multicenter interactions involving Mg and Pt species. The metallic character of Mg3Pt2 is confirmed by electronic structure calculations and physical measurements.

17.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33990329

RESUMO

The assignment of enantiomorphs by diffraction methods shows fundamental differences for x-rays and electrons. This is particularly evident for the chiral allotrope of ß-Mn. While it is not possible to determine the sense of chirality of ß-Mn with established x-ray diffraction methods, Kikuchi pattern simulation of the enantiomorphs reveals differences, if dynamical electron diffraction is considered. Quantitative comparison between experimental and simulated Kikuchi patterns allows the spatially resolved assignment of the enantiomorph in polycrystalline materials of ß-Mn, as well as the structurally strongly related phase Pt2Cu3B. On the basis of enantiomorph distribution maps, crystals were extracted from enantiopure domains by micropreparation techniques. The x-ray diffraction analyses confirm the assignment of the Kikuchi pattern evaluations for Pt2Cu3B and do not allow to distinguish between the enantiomorphs of ß-Mn.

18.
Chemistry ; 27(57): 14209-14216, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33930206

RESUMO

In a joint effort utilizing modified sample preparation, microscopy, X-ray diffraction and micro-fabrication, it became possible to prepare single crystals of the "hidden" phase AlCr2 . High-resolution X-ray diffraction analysis is described in detail for two crystals with the similar overall composition, but different degree of disorder, which seems to be the main cause for the differing unit cell parameters. Chemical bonding analysis of AlCr2 in comparison to prototypical MoSi2 shows pronounced differences reflecting the interchange of main group element vs. transition metal as majority component.


Assuntos
Cristalografia por Raios X , Difração de Raios X
19.
Dalton Trans ; 50(4): 1274-1282, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33393534

RESUMO

The clathrate-I borosilicide K8-xBySi46-y (0.8 ≤x≤ 1.2 and 6.4 ≤y≤ 7.2; space group Pm3[combining macron]n) was prepared in sealed tantalum ampoules between 900 °C and 1000 °C. By high-pressure preparation at 8 GPa and 1000 °C, a higher boron content is achieved (x = 0.2, y = 7.8). Crystal structure and composition were established from X-ray diffraction data, chemical analysis, WDX spectroscopy, and confirmed by 11B and 29Si NMR, and magnetic susceptibility measurements. The compositions are electron-balanced according to the Zintl rule within one estimated standard deviation. The lattice parameter varies with composition from a = 9.905 Å for K7.85(2)B7.8(1)Si38.2(1) to a = 9.968(1) Å for K6.80(2)B6.4(5)Si39.6(5).

20.
Inorg Chem ; 59(19): 14280-14289, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946694

RESUMO

Hf2B2-2δIr5+δ crystallizes with a new type of structure: space group Pbam, a = 5.6300(3) Å, b = 11.2599(5) Å, and c = 3.8328(2) Å. Nearly 5% of the boron pairs are randomly replaced by single iridium atoms (Ir5+δB2-2δ). From an analysis of the chemical bonding, the crystal structure can be understood as a three-dimensional framework stabilized by covalent two-atom B-B and Ir-Ir as well as three-atom Ir-Ir-B and Ir-Ir-Ir interactions. The hafnium atoms center 14-atom cavities and transfer a significant amount of charge to the polyanionic boron-iridium framework. This refractory boride displays moderate hardness and is a Pauli paramagnet with metallic electrical resistivity, Seebeck coefficient, and thermal conductivity. The metallic character of this system is also confirmed by electronic structure calculations revealing 5.8 states eV-1 fu-1 at the Fermi level. Zr2B2-2δIr5+δ is found to be isotypic with Hf2B2-2δIr5+δ, and both form a continuous solid solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...