Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 5391, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568168

RESUMO

Most studies of the northern hemisphere carbon cycle based on atmospheric CO2 concentration have focused on spring and autumn, but the climate change impact on summer carbon cycle remains unclear. Here we used atmospheric CO2 record from Point Barrow (Alaska) to show that summer CO2 drawdown between July and August, a proxy of summer carbon uptake, is significantly negatively correlated with terrestrial temperature north of 50°N interannually during 1979-2012. However, a refined analysis at the decadal scale reveals strong differences between the earlier (1979-1995) and later (1996-2012) periods, with the significant negative correlation only in the later period. This emerging negative temperature response is due to the disappearance of the positive temperature response of summer vegetation activities that prevailed in the earlier period. Our finding, together with the reported weakening temperature control on spring carbon uptake, suggests a diminished positive effect of warming on high-latitude carbon uptake.

2.
Proc Natl Acad Sci U S A ; 114(38): 10035-10040, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874529

RESUMO

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

3.
Proc Natl Acad Sci U S A ; 108(49): 19530-4, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22084074

RESUMO

The largest concern on the cesium-137 ((137)Cs) deposition and its soil contamination due to the emission from the Fukushima Daiichi Nuclear Power Plant (NPP) showed up after a massive quake on March 11, 2011. Cesium-137 ((137)Cs) with a half-life of 30.1 y causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. Removal of (137)Cs contaminated soils or land use limitations in areas where removal is not possible is, therefore, an urgent issue. A challenge lies in the fact that estimates of (137)Cs emissions from the Fukushima NPP are extremely uncertain, therefore, the distribution of (137)Cs in the environment is poorly constrained. Here, we estimate total (137)Cs deposition by integrating daily observations of (137)Cs deposition in each prefecture in Japan with relative deposition distribution patterns from a Lagrangian particle dispersion model, FLEXPART. We show that (137)Cs strongly contaminated the soils in large areas of eastern and northeastern Japan, whereas western Japan was sheltered by mountain ranges. The soils around Fukushima NPP and neighboring prefectures have been extensively contaminated with depositions of more than 100,000 and 10,000 MBq km(-2), respectively. Total (137)Cs depositions over two domains: (i) the Japan Islands and the surrounding ocean (130-150 °E and 30-46 °N) and, (ii) the Japan Islands, were estimated to be approximately 6.7 and 1.3 PBq, [corrected] respectively.We hope our (137)Cs deposition maps will help to coordinate decontamination efforts and plan regulatory measures in Japan.


Assuntos
Radioisótopos de Césio/análise , Terremotos , Cinza Radioativa/análise , Liberação Nociva de Radioativos , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/química , Geografia , Meia-Vida , Japão , Modelos Químicos , Reatores Nucleares , Solo/análise , Poluentes Radioativos do Solo/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...