Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Br J Cancer ; 128(6): 1040-1051, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36624219

RESUMO

BACKGROUND: Up to 50% of patients with uveal melanoma develop metastases (MUM) with a poor prognosis and median overall survival of approximately 1 year. METHODS: This phase I study evaluated the safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the oral protein kinase C inhibitor LXS196 in 68 patients with MUM (NCT02601378). Patients received LXS196 doses ranging from 100-1000 mg once daily (QD; n = 38) and 200-400 mg twice daily (BID; n = 30). RESULTS: First cycle dose-limiting toxicities (DLTs) were observed in 7/38 (18.4%) QD and 2/17 (11.8%) BID patients. Hypotension was the most common DLT, occurring at doses ≥500 mg/day, and manageable with LXS196 interruption and dose reduction. Median duration of exposure to LXS196 was 3.71 months (range: 1.81-15.28) for QD and 4.6 months (range: 0.33-58.32) for BID dosing. Clinical activity was observed in 6/66 (9.1%) evaluable patients achieving response (CR/PR), with a median duration of response of 10.15 months (range: 2.99-41.95); 45/66 had stable disease (SD) per RECIST v1.1. At 300 mg BID, the recommended dose for expansion, 2/18 (11.1%) evaluable patients achieved PR and 12/18 (66.7%) had SD. CONCLUSION: These results suggest manageable toxicity and encouraging clinical activity of single-agent LXS196 in patients with MUM.


Assuntos
Proteína Quinase C , Inibidores de Proteínas Quinases , Humanos
2.
Clin. transl. oncol. (Print) ; 24(1): 127-144, enero 2022. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-203421

RESUMO

Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype with rapid growth, high rates of metastasis, recurrence and drug resistance, and diverse molecular and histological heterogeneity. Patient-derived xenografts (PDXs) provide a translational tool and physiologically relevant system to evaluate tumor biology of rare subtypes. Here, we provide an in-depth comprehensive characterization of a new PDX model for MBC, TU-BcX-4IC. TU-BcX-4IC is a clinically aggressive tumor exhibiting rapid growth in vivo, spontaneous metastases, and elevated levels of cell-free DNA and circulating tumor cell DNA. Relative chemosensitivity of primary cells derived from TU-BcX-4IC was performed using the National Cancer Institute (NCI) oncology drug set, crystal violet staining, and cytotoxic live/dead immunofluorescence stains in adherent and organoid culture conditions. We employed novel spheroid/organoid incubation methods (Pu·MA system) to demonstrate that TU-BcX-4IC is resistant to paclitaxel. An innovative physiologically relevant system using human adipose tissue was used to evaluate presence of cancer stem cell-like populations ex vivo. Tissue decellularization, cryogenic-scanning electron microscopy imaging and rheometry revealed consistent matrix architecture and stiffness were consistent despite serial transplantation. Matrix-associated gene pathways were essentially unchanged with serial passages, as determined by qPCR and RNA sequencing, suggesting utility of decellularized PDXs for in vitro screens. We determined type V collagen to be present throughout all serial passage of TU-BcX-4IC tumor, suggesting it is required for tumor maintenance and is a potential viable target for MBC. In this study we introduce an innovative and translational model system to study cell–matrix interactions in rare cancer types using higher passage PDX tissue.


Assuntos
Humanos , Ciências da Saúde , Neoplasias da Mama , Xenoenxertos , Metástase Neoplásica , Matriz Extracelular , Resistência a Medicamentos/efeitos dos fármacos , Colágeno
3.
Clin Transl Oncol ; 24(1): 127-144, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34370182

RESUMO

Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype with rapid growth, high rates of metastasis, recurrence and drug resistance, and diverse molecular and histological heterogeneity. Patient-derived xenografts (PDXs) provide a translational tool and physiologically relevant system to evaluate tumor biology of rare subtypes. Here, we provide an in-depth comprehensive characterization of a new PDX model for MBC, TU-BcX-4IC. TU-BcX-4IC is a clinically aggressive tumor exhibiting rapid growth in vivo, spontaneous metastases, and elevated levels of cell-free DNA and circulating tumor cell DNA. Relative chemosensitivity of primary cells derived from TU-BcX-4IC was performed using the National Cancer Institute (NCI) oncology drug set, crystal violet staining, and cytotoxic live/dead immunofluorescence stains in adherent and organoid culture conditions. We employed novel spheroid/organoid incubation methods (Pu·MA system) to demonstrate that TU-BcX-4IC is resistant to paclitaxel. An innovative physiologically relevant system using human adipose tissue was used to evaluate presence of cancer stem cell-like populations ex vivo. Tissue decellularization, cryogenic-scanning electron microscopy imaging and rheometry revealed consistent matrix architecture and stiffness were consistent despite serial transplantation. Matrix-associated gene pathways were essentially unchanged with serial passages, as determined by qPCR and RNA sequencing, suggesting utility of decellularized PDXs for in vitro screens. We determined type V collagen to be present throughout all serial passage of TU-BcX-4IC tumor, suggesting it is required for tumor maintenance and is a potential viable target for MBC. In this study we introduce an innovative and translational model system to study cell-matrix interactions in rare cancer types using higher passage PDX tissue.


Assuntos
Antineoplásicos/uso terapêutico , Modelos Biológicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncogenesis ; 4: e168, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26436950

RESUMO

Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11), has been identified as a tumor suppressor in many cancers including breast. Low LKB1 expression has been associated with poor prognosis of breast cancer patients, and we report here a significant association between loss of LKB1 expression and reduced patient survival specifically in the basal subtype of breast cancer. Owing to the aggressive nature of the basal subtype as evidenced by high incidences of metastasis, the purpose of this study was to determine if LKB1 expression could regulate the invasive and metastatic properties of this specific breast cancer subtype. Induction of LKB1 expression in basal-like breast cancer (BLBC)/triple-negative breast cancer cell lines, MDA-MB-231 and BT-549, inhibited invasiveness in vitro and lung metastatic burden in an orthotopic xenograft model. Further analysis of BLBC cells overexpressing LKB1 by unbiased whole transcriptomics (RNA-sequencing) revealed striking regulation of metastasis-associated pathways, including cell adhesion, extracellular matrix remodeling, and epithelial-to-mesenchymal transition (EMT). In addition, LKB1 overexpression inhibited EMT-associated genes (CDH2, Vimentin, Twist) and induced the epithelial cell marker CDH1, indicating reversal of the EMT phenotype in the MDA-MB-231 cells. We further demonstrated marked inhibition of matrix metalloproteinase 1 expression and activity via regulation of c-Jun through inhibition of p38 signaling in LKB1-expressing cells. Taken together, these data support future development of LKB1 inducing therapeutics for the suppression of invasion and metastasis of BLBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...