Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358968

RESUMO

Bryconops Kner, 1858, includes two well defined subgenera based on morphological evidence, with each containing at least one species (B. (Bryconops) caudomaculatus and B. (Creatochanes) melanurus) with a very wide distribution, within which regional populations present color variations. To test if phenotypic variation is related to cladogenetic events, we performed tests for phylogenetic independence and determined the strength of convergence for color characters in relation to water type, as the variation between clear, black and white waters is considered to be one of the major driving forces in the evolution of Amazonian fishes. Color characters for fins above the median line of the body were generally found to be independent from phylogeny and the Wheatsheaf test strongly supports convergence of the dorsal fin color between populations of species in the same type of water, with a similar trend suggested for the color of the dorsal lobe of the caudal fin. This means that simple color characters cannot necessarily be relied upon for taxonomic revisions of the genus as local phenotypic variants may represent environmentally determined plasticity or convergent evolution. Further studies are required to determine the validity of these characters.


Assuntos
Caraciformes , Animais , Filogenia , Nadadeiras de Animais/anatomia & histologia , Especiação Genética , Água
2.
Genet Mol Biol ; 44(2): e20190252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847701

RESUMO

Amazonian (Trichechus inunguis) and West Indian (Trichechus manatus) manatees are aquatic mammals vulnerable to extinction found in the Amazon basin and the coastal western Atlantic. Toll-like receptors (TLR) play a key role in recognizing pathogen-associated molecular patterns using leucine-rich repeats (LRRs). We described the diversity of TLR4 and TLR8 genes in these two species of manatee. Amazonian manatee showed seven SNPs in TLR4 and the eight in TLR8, while West Indian manatee shared four and six of those SNPs, respectively. In our analysis, TLR4 showed one non-conservative amino acid replacement substitution in LRR7 and LRR8, on the other hand, TLR8 was less variable and showed only conserved amino acid substitutions. Selection analysis showed that only one TLR4 site was subjected to positive selection and none in TLR8. TLR4 in manatees did not show any evidence of convergent evolution compared to species of the cetacean lineage. Differences in TLR4 and TLR8 polymorphism may be related to distinct selection by pathogens, population reduction of West Indian manatees, or an expected consequence of population expansion in Amazonian manatees. Future studies combining pathogen association and TLR polymorphism may clarify possible roles of these genes and be used for conservation purposes of manatee species.

3.
Sci Adv ; 5(7): eaat5752, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281878

RESUMO

The Amazon is the primary source of Neotropical diversity and a nexus for discussions on processes that drive biotic diversification. Biogeographers have focused on the roles of rivers and Pleistocene climate change in explaining high rates of speciation. We combine phylogeographic and niche-based paleodistributional projections for 23 upland terra firme forest bird lineages from across the Amazon to derive a new model of regional biological diversification. We found that climate-driven refugial dynamics interact with dynamic riverine barriers to produce a dominant pattern: Older lineages in the wetter western and northern parts of the Amazon gave rise to lineages in the drier southern and eastern parts. This climate/drainage basin evolution interaction links landscape dynamics with biotic diversification and explains the east-west diversity gradients across the Amazon.


Assuntos
Aves/fisiologia , Animais , Biodiversidade , Brasil , Clima , Florestas , Modelos Biológicos , Filogeografia , Rios , Análise Espaço-Temporal
4.
Front Immunol ; 10: 696, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019512

RESUMO

Sirenians share with cetaceans and pinnipeds several convergent traits selected for the aquatic lifestyle. Living in water poses new challenges not only for locomotion and feeding but also for combating new pathogens, which may render the immune system one of the best tools aquatic mammals have for dealing with aquatic microbial threats. So far, only cetaceans have had their class II Major Histocompatibility Complex (MHC) organization characterized, despite the importance of MHC genes for adaptive immune responses. This study aims to characterize the organization of the marine mammal class II MHC using publicly available genomes. We located class II sequences in the genomes of one sirenian, four pinnipeds and eight cetaceans using NCBI-BLAST and reannotated the sequences using local BLAST search with exon and intron libraries. Scaffolds containing class II sequences were compared using dotplot analysis and introns were used for phylogenetic analysis. The manatee class II region shares overall synteny with other mammals, however most DR loci were translocated from the canonical location, past the extended class II region. Detailed analysis of the genomes of closely related taxa revealed that this presumed translocation is shared with all other living afrotherians. Other presumptive chromosome rearrangements in Afrotheria are the deletion of DQ loci in Afrosoricida and deletion of DP in E. telfairi. Pinnipeds share the main features of dog MHC: lack of a functional pair of DPA/DPB genes and inverted DRB locus between DQ and DO subregions. All cetaceans share the Cetartiodactyla inversion separating class II genes into two subregions: class IIa, with DR and DQ genes, and class IIb, with non-classic genes and a DRB pseudogene. These results point to three distinct and unheralded class II MHC structures in marine mammals: one canonical organization but lacking DP genes in pinnipeds; one bearing an inversion separating IIa and IIb subregions lacking DP genes found in cetaceans; and one with a translocation separating the most diverse class II gene from the MHC found in afrotherians and presumptive functional DR, DQ, and DP genes. Future functional research will reveal how these aquatic mammals cope with pathogen pressures with these divergent MHC organizations.


Assuntos
Eutérios/genética , Eutérios/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Animais , Genômica , Mamíferos , Filogenia
5.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(2): 231-232, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26679427

RESUMO

Among known bird species, oscines are one of the few groups that produce complex vocalizations due to vocal learning. One of the most conspicuous oscine passerines in southeastern South America is the Rufous-bellied Thrush, Turdus rufiventris. The complete mitochondrial genome of this species was sequenced with the Illumina HiSeq platform (Illumina Inc., San Diego, CA), assembled using MITObim software and annotated by MITOS web server and Artemis software. This mitogenome contained 16 669 bases, organized as 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and a control region (d-loop). The sequencing of the Rufous-bellied Thrush mitochondrial genome is of particular interest for better understanding of population genetics and phylogeography of the Turdidae family.


Assuntos
Genoma Mitocondrial , Passeriformes/genética , Animais , Proteínas Aviárias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Mitocondriais/genética , Anotação de Sequência Molecular , Filogenia , Filogeografia , RNA Ribossômico/genética , RNA de Transferência/genética , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...