Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 17(1): 124-136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007005

RESUMO

SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.


Assuntos
COVID-19 , Humanos , Anticorpos Antivirais , Antígenos Virais , Imunoglobulina A , SARS-CoV-2 , Vimentina
2.
Front Immunol ; 14: 1287258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115997

RESUMO

ISG15 deficiency is a rare disease caused by autosomal recessive variants in the ISG15 gene, which encodes the ISG15 protein. The ISG15 protein plays a dual role in both the type I and II interferon (IFN) immune pathways. Extracellularly, the ISG15 protein is essential for IFN-γ-dependent anti-mycobacterial immunity, while intracellularly, ISG15 is necessary for USP18-mediated downregulation of IFN-α/ß signalling. Due to this dual role, ISG15 deficiency can present with various clinical phenotypes, ranging from susceptibility to mycobacterial infection to autoinflammation characterised by necrotising skin lesions, intracerebral calcification, and pulmonary involvement. In this report, we describe novel variants found in two different families that result in complete ISG15 deficiency and severe skin ulceration. Whole exome sequencing identified a heterozygous missense p.Q16X ISG15 variant and a heterozygous multigene 1p36.33 deletion in the proband from the first family. In the second family, a homozygous total ISG15 gene deletion was detected in two siblings. We also conducted further analysis, including characterisation of cytokine dysregulation, interferon-stimulated gene expression, and p-STAT1 activation in lymphocytes and lesional tissue. Finally, we demonstrate the complete and rapid resolution of clinical symptoms associated with ISG15 deficiency in one sibling from the second family following treatment with the Janus kinase (JAK) inhibitor baricitinib.


Assuntos
Citocinas , Ubiquitinas , Humanos , Ubiquitinas/metabolismo , Citocinas/metabolismo , Interferons , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38006337

RESUMO

OBJECTIVE: Several monogenic autoinflammatory disorders and primary immunodeficiencies can present early in life with features that may be mistaken for Behçet's disease (BD). We aimed to develop a genetic analysis workflow to identify rare monogenic BD-like diseases and establish the contribution of HLA haplotype in a cohort of patients from the UK. METHODS: Patients with clinically suspected BD were recruited from four BD specialist care centres in the UK. All participants underwent whole exome sequencing (WES), and genetic analysis thereafter by 1. examining genes known to cause monogenic immunodeficiency, autoinflammation or vasculitis by virtual panel application; 2. scrutiny of variants prioritised by Exomiser using Human Phenotype Ontology (HPO); 3. identification of copy number variants using ExomeDepth; and 4. HLA-typing using OptiType. RESULTS: Thirty-one patients were recruited: median age 15 (4-52), and median disease onset age 5 (0-20). Nine/31 (29%) patients had monogenic disease mimicking BD: 5 cases of Haploinsufficiency of A20 with novel TNFAIP3 variants (p.T76I, p.M112Tfs*8, p.S548Dfs*128, p.C657Vfs*14, p.E661Nfs*36); 1 case of ISG15 deficiency with a novel nonsense variant (ISG15:p.Q16X) and 1p36.33 microdeletion; 1 case of Common variable immune deficiency (TNFRSF13B:p.A181E); and 2 cases of TNF receptor associated periodic syndrome (TNFRSF1A:p.R92Q). Of the remaining 22 patients, 8 (36%) were HLA-B*51 positive. CONCLUSION: We describe a novel genetic workflow for BD, which can efficiently detect known and potentially novel monogenic forms of BD, whilst additionally providing HLA-typing. Our results highlight the importance of genetic testing before BD diagnosis, since this has impact on choice of therapy, prognosis, and genetic counselling.

4.
Front Immunol ; 14: 1231749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744344

RESUMO

We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1ß), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon ß (IFN-ß); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans.


Assuntos
Anemia , Leucócitos Mononucleares , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Esplenomegalia/genética , Interleucina-6 , Doenças Neuroinflamatórias , Anemia/genética , Mutação
6.
Front Immunol ; 13: 998967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203604

RESUMO

There is an important unmet clinical need for fast turnaround next generation sequencing (NGS) to aid genetic diagnosis of patients with acute and sometimes catastrophic inflammatory presentations. This is imperative for patients who require precise and targeted treatment to prevent irreparable organ damage or even death. Acute and severe hyper- inflammation may be caused by primary immunodeficiency (PID) with immune dysregulation, or more typical autoinflammatory diseases in the absence of obvious immunodeficiency. Infectious triggers may be present in either immunodeficiency or autoinflammation. We compiled a list of 25 genes causing monogenetic immunological diseases that are notorious for their acute first presentation with fulminant inflammation and which may be amenable to specific treatment, including hemophagocytic lymphohistiocytosis (HLH); and autoinflammatory diseases that can present with early-onset stroke or other irreversible neurological inflammatory complications. We designed and validated a pipeline that enabled return of clinically actionable results in hours rather than weeks: the Rapid Autoinflammation Panel (RAP). We demonstrated accuracy of this new pipeline, with 100% sensitivity and 100% specificity. Return of results to clinicians was achieved within 48-hours from receiving the patient's blood or saliva sample. This approach demonstrates the potential significant diagnostic impact of NGS in acute medicine to facilitate precision medicine and save "life or limb" in these critical situations.


Assuntos
Doenças Hereditárias Autoinflamatórias , Doenças do Sistema Imunitário , Síndromes de Imunodeficiência , Doenças Hereditárias Autoinflamatórias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndromes de Imunodeficiência/genética , Inflamação/genética
7.
Sci Signal ; 13(643)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753479

RESUMO

Cerebral amyloid angiopathy (CAA) and ß-amyloid (Aß) deposition in the brain parenchyma are hallmarks of Alzheimer's disease (AD). We previously reported that platelets contribute to Aß aggregation in cerebral vessels by secreting the factor clusterin upon binding of Aß40 to the fibrinogen receptor integrin αIIbß3 Here, we investigated the contribution of the collagen receptor GPVI (glycoprotein VI) in platelet-induced amyloid aggregation. Using platelets isolated from GPVI-wild type and GPVI-deficient human donors and mice, we found that Aß40 bound to GPVI, which induced the release of ATP and fibrinogen, resulting in platelet aggregation. Binding of Aß40 to integrin αIIbß3, fibrinogen, and GPVI collectively contributed to the formation of amyloid clusters at the platelet surface. Consequently, blockade of αIIbß3 or genetic loss of GPVI reduced amyloid fibril formation in cultured platelets and decreased the adhesion of Aß-activated platelets to injured carotid arteries in mice. Application of losartan to inhibit collagen binding to GPVI resulted in decreased Aß40-stimulated platelet activation, factor secretion, and platelet aggregation. Furthermore, the application of GPVI- or integrin-blocking antibodies reduced the formation of platelet-associated amyloid aggregates. Our findings indicate that Aß40 promotes platelet-mediated amyloid aggregation by binding to both GPVI and integrin αIIbß3 Blocking these pathways may therapeutically reduce amyloid plaque formation in cerebral vessels and the brain parenchyma of patients.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Plaquetas/metabolismo , Fragmentos de Peptídeos/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Receptores de Colágeno/metabolismo , Adulto , Doença de Alzheimer/metabolismo , Animais , Plaquetas/citologia , Células Cultivadas , Fibrinogênio/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Ligação Proteica , Receptores de Colágeno/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...