Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38365209

RESUMO

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Assuntos
COVID-19 , Glutamina , Humanos , Glutamina/química , SARS-CoV-2 , Cisteína Endopeptidases/química , Invenções , Inibidores de Proteases/farmacologia , Amidas , Antivirais/farmacologia , Antivirais/química
2.
ACS Med Chem Lett ; 15(1): 123-131, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229758

RESUMO

Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead 1, we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution. Our strategy involved the use of predicted volume ligand efficiency to advance compounds with greater potential for low human doses down our screening funnel. We also applied minimized electrostatic potentials (Vmin) calculations for hydrogen bond acceptor sites to rationalize P-gp SAR. Together, our strategies enabled the alignment of a lower human dose with reduced P-gp efflux, and favorable PXR selectivity for the discovery of compound 12.

3.
Bioorg Med Chem Lett ; 89: 129303, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146837

RESUMO

Lens epithelial-derived growth factor (LEDGF) increases the efficiency of proviral DNA integration into the host genome by interacting with HIV integrase (IN) and directing it to a chromatin environment that favors viral transcription. Allosteric integrase inhibitors (ALLINIs), such as known 2-(tert-butoxy)acetic acid (1), bind to the LEDGF pocket on the catalytic core domain (CCD) of IN, but exert more potent antiviral activities by inhibition of late-stage HIV-1 replication events than through disruption of proviral integration at an earlier phase. A high-throughput screen (HTS) for compounds that disrupt IN-LEDGF interaction led to the identification of a novel arylsulfonamide series, as exemplified by 2, possessing ALLINI-like properties. Further SAR studies led to more potent compound 21 and provided key chemical biology probes revealing that arylsulfonamides are a novel class of ALLINIs with a distinct binding mode than that of 2-(tert-butoxy)acetic acids.


Assuntos
Fármacos Anti-HIV , Inibidores de Integrase de HIV , Integrase de HIV , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/química , Regulação Alostérica , Domínio Catalítico , Integrase de HIV/metabolismo
4.
ACS Med Chem Lett ; 14(2): 146-155, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793422

RESUMO

Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS). Herein, we report the optimization of a bicyclic pyrazole amide GCS inhibitor discovered through HTS to low dose, oral, CNS penetrant, bicyclic pyrazole urea GCSi's with in vivo activity in mouse models and ex vivo activity in iPSC neuronal models of synucleinopathy and lysosomal dysfunction. This was accomplished through the judicious use of parallel medicinal chemistry, direct-to-biology screening, physics-based rationalization of transporter profiles, pharmacophore modeling, and use a novel metric: volume ligand efficiency.

5.
Neurobiol Dis ; 159: 105507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509608

RESUMO

Mutations in the lysosomal enzyme glucocerebrosidase (GCase, GBA1 gene) are the most common genetic risk factor for developing Parkinson's disease (PD). GCase metabolizes the glycosphingolipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Mutations in GBA1 reduce enzyme activity and the resulting accumulation of glycosphingolipids may contribute to the underlying pathology of PD, possibly via altering lysosomal function. While reduction of GCase activity exacerbates α-synuclein (α-syn) aggregation, it has not been determined that this effect is the result of altered glycosphingolipid levels and lysosome function or some other effect of altering GCase. The glycosphingolipid GlcCer is synthesized by a single enzyme, glucosylceramide synthase (GCS), and small molecule inhibitors (GCSi) reduce cellular glycosphingolipid levels. In the present studies, we utilize a preformed fibril (PFF) rodent primary neuron in vitro model of α-syn pathology to investigate the relationship between glycosphingolipid levels, α-syn pathology, and lysosomal function. In primary cultures, pharmacological inhibition of GCase and D409V GBA1 mutation enhanced accumulation of glycosphingolipids and insoluble phosphorylated α-syn. Administration of a novel small molecule GCSi, benzoxazole 1 (BZ1), significantly decreased glycosphingolipid concentrations in rodent primary neurons and reduced α-syn pathology. BZ1 rescued lysosomal deficits associated with the D409V GBA1 mutation and α-syn PFF administration, and attenuated α-syn induced neurodegeneration of dopamine neurons. In vivo studies revealed BZ1 had pharmacological activity and reduced glycosphingolipids in the mouse brain to a similar extent observed in neuronal cultures. These data support the hypothesis that reduction of glycosphingolipids through GCS inhibition may impact progression of synucleinopathy and BZ1 is useful tool to further examine this important biology.


Assuntos
Benzoxazóis/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucosilceramidase/genética , Glucosiltransferases/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Lisossomos/efeitos dos fármacos , Sinucleinopatias/metabolismo , alfa-Sinucleína/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Técnicas In Vitro , Lisossomos/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Cultura Primária de Células , Agregados Proteicos , Ratos , Sinucleinopatias/genética , alfa-Sinucleína/metabolismo
6.
Nat Commun ; 12(1): 3040, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031403

RESUMO

All herpesviruses encode a conserved DNA polymerase that is required for viral genome replication and serves as an important therapeutic target. Currently available herpesvirus therapies include nucleoside and non-nucleoside inhibitors (NNI) that target the DNA-bound state of herpesvirus polymerase and block replication. Here we report the ternary complex crystal structure of Herpes Simplex Virus 1 DNA polymerase bound to DNA and a 4-oxo-dihydroquinoline NNI, PNU-183792 (PNU), at 3.5 Å resolution. PNU bound at the polymerase active site, displacing the template strand and inducing a conformational shift of the fingers domain into an open state. These results demonstrate that PNU inhibits replication by blocking association of dNTP and stalling the enzyme in a catalytically incompetent conformation, ultimately acting as a nucleotide competing inhibitor (NCI). Sequence conservation of the NCI binding pocket further explains broad-spectrum activity while a direct interaction between PNU and residue V823 rationalizes why mutations at this position result in loss of inhibition.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Herpesviridae/efeitos dos fármacos , Herpesviridae/enzimologia , Antivirais/farmacologia , Sítios de Ligação , DNA Polimerase Dirigida por DNA/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Exodesoxirribonucleases , Nucleotídeos , Quinolinas/farmacologia , Proteínas Virais , Replicação Viral
7.
ACS Med Chem Lett ; 12(4): 540-547, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33854701

RESUMO

A novel series of histone deacetylase (HDAC) inhibitors lacking a zinc-binding moiety has been developed and described herein. HDAC isozyme profiling and kinetic studies indicate that these inhibitors display a selectivity preference for HDACs 1, 2, 3, 10, and 11 via a rapid equilibrium mechanism, and crystal structures with HDAC2 confirm that these inhibitors do not interact with the catalytic zinc. The compounds are nonmutagenic and devoid of electrophilic and mutagenic structural elements and exhibit off-target profiles that are promising for further optimization. The efficacy of this new class in biochemical and cell-based assays is comparable to the marketed HDAC inhibitors belinostat and vorinostat. These results demonstrate that the long-standing pharmacophore model of HDAC inhibitors requiring a metal binding motif should be revised and offers a distinct class of HDAC inhibitors.

8.
ACS Chem Biol ; 12(11): 2858-2865, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29024587

RESUMO

Allosteric integrase inhibitors (ALLINIs) bind to the lens epithelial-derived growth factor (LEDGF) pocket on HIV-1 integrase (IN) and possess potent antiviral effects. Rather than blocking proviral integration, ALLINIs trigger IN conformational changes that have catastrophic effects on viral maturation, rendering the virions assembled in the presence of ALLINIs noninfectious. A high-throughput screen for compounds that disrupt the IN·LEDGF interaction was executed, and extensive triage led to the identification of a t-butylsulfonamide series, as exemplified by 1. The chemical, biochemical, and virological characterization of this series revealed that 1 and its analogs produce an ALLINI-like phenotype through engagement of IN sites distinct from the LEDGF pocket. Key to demonstrating target engagement and differentiating this new series from the existing ALLINIs was the development of a fluorescence polarization probe of IN (FLIPPIN) based on the t-butylsulfonamide series. These findings further solidify the late antiviral mechanism of ALLINIs and point toward opportunities to develop structurally and mechanistically novel antiretroviral agents with unique resistance patterns.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Linhagem Celular , Descoberta de Drogas , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia
9.
Proc Natl Acad Sci U S A ; 114(3): E297-E306, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28039433

RESUMO

Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/antagonistas & inibidores , Receptor trkA/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Receptor trkA/genética , Receptor trkB/antagonistas & inibidores , Receptor trkB/química , Receptor trkB/genética , Receptor trkC/antagonistas & inibidores , Receptor trkC/química , Receptor trkC/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
10.
ChemMedChem ; 10(4): 727-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25759009

RESUMO

With the goal of identifying inhibitors of hepatitis C virus (HCV) NS3/4a protease that are potent against a wide range of genotypes and clinically relevant mutant viruses, several subseries of macrocycles were investigated based on observations made during the discovery of MK-5172. Quinazolinone-containing macrocycles were identified as promising leads, and optimization for superior cross-genotype and mutant enzyme potency as well as rat liver and plasma concentrations following oral dosing, led to the development of MK-2748. Additional investigation of a series of bis-macrocycles containing a fused 18- and 15-membered ring system were also optimized for the same properties, leading to the discovery of MK-6325. Both compounds display the broad genotype and mutant potency necessary for clinical development as next-generation HCV NS3/4a protease inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/enzimologia , Compostos Macrocíclicos/farmacologia , Quinazolinonas/farmacologia , Sulfonas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/farmacocinética , Cristalografia por Raios X , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacocinética , Modelos Moleculares , Mutação , Quinazolinonas/química , Quinazolinonas/farmacocinética , Ratos , Sulfonas/farmacocinética , Proteínas não Estruturais Virais/genética
11.
Anal Biochem ; 465: 164-71, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25132562

RESUMO

The viral transactivator protein (Tat) plays an essential role in the replication of human immunodeficiency type 1 virus (HIV-1) by recruiting the host positive transcription elongation factor (pTEFb) to the RNA polymerase II transcription machinery to enable an efficient HIV-1 RNA elongation process. Blockade of the interaction between Tat and pTEFb represents a novel strategy for developing a new class of antiviral agents. In this study, we developed a homogeneous assay in AlphaLISA (amplified luminescent proximity homogeneous assay) format using His-tagged pTEFb and biotinylated Tat to monitor the interaction between Tat and pTEFb. On optimizing the assay conditions, the signal-to-background ratio was found to be greater than 10-fold. The assay was validated with untagged Tat and peptides known to compete with Tat for pTEFb binding. The Z' of the assay is greater than 0.5, indicating that the assay is robust and can be easily adapted to a high-throughput screening format. Furthermore, the affinity between Tat and pTEFb was determined to be approximately 20 pM, and only 7% of purified Tat was found to be active in forming tertiary complex with pTEFb. Development of this assay should facilitate the discovery of a new class of antiviral agents providing HIV-1 patients with broader treatment choices.


Assuntos
HIV-1/química , Medições Luminescentes/métodos , Complexos Multiproteicos/química , Fator B de Elongação Transcricional Positiva/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Animais , HIV-1/genética , HIV-1/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/genética , Células Sf9 , Spodoptera , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
12.
Bioorg Med Chem Lett ; 22(23): 7201-6, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23021993

RESUMO

A series of macrocyclic compounds containing 2-substituted-quinoline moieties have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K mutant activity while maintaining the high rat liver exposure. Cyclization of the 2-substituted quinoline substituent led to a series of tricyclic P2 compounds which also display superb gt3a potency.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Hepacivirus/enzimologia , Compostos Macrocíclicos/química , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Proteínas de Transporte/metabolismo , Ciclização , Genótipo , Meia-Vida , Hepacivirus/genética , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Fígado/metabolismo , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacocinética , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacocinética , Quinolinas/química , Ratos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
13.
Bioorg Med Chem Lett ; 22(23): 7207-13, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23084906

RESUMO

A series of macrocyclic compounds containing a cyclic constraint in the P2-P4 linker region have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K, A156T, A156V, and D168V mutant activity while maintaining high rat liver exposure. The effect of the constraint is most dramatic against gt 1b A156 mutants where ~20-fold improvements in potency are achieved by introduction of a variety of ring systems into the P2-P4 linker.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Hepacivirus/enzimologia , Compostos Macrocíclicos/química , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Domínio Catalítico , Ciclização , Genótipo , Meia-Vida , Hepacivirus/genética , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Fígado/metabolismo , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacocinética , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteases/síntese química , Inibidores de Proteases/farmacocinética , Ratos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
14.
Antimicrob Agents Chemother ; 56(8): 4161-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22615282

RESUMO

HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.


Assuntos
Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Quinoxalinas/farmacologia , Quinoxalinas/farmacocinética , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas , Animais , Antivirais/farmacologia , Carbamatos , Ciclopropanos , Cães , Farmacorresistência Viral , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Fígado/efeitos dos fármacos , Pan troglodytes , Quinoxalinas/metabolismo , Ratos , Sulfonamidas , Carga Viral/efeitos dos fármacos
15.
ACS Med Chem Lett ; 3(4): 332-6, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900473

RESUMO

A new class of HCV NS3/4a protease inhibitors containing a P2 to P4 macrocyclic constraint was designed using a molecular modeling-derived strategy. Building on the profile of previous clinical compounds and exploring the P2 and linker regions of the series allowed for optimization of broad genotype and mutant enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 15 (MK-5172), which is active against genotype 1-3 NS3/4a and clinically relevant mutant enzymes and has good plasma exposure and excellent liver exposure in multiple species.

16.
J Med Chem ; 54(20): 7176-83, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21916489

RESUMO

In the present paper, design, synthesis, X-ray crystallographic analysis, and HIV-1 protease inhibitory activities of a novel class of compounds are disclosed. Compounds 28-30, 32, 35, and 40 were synthesized and found to be inhibitors of the HIV-1 protease. The crucial step in their synthesis involved an unusual endo radical cyclization process. Absolute stereochemistry of the three asymmetric centers in the above compounds have been established to be (4S,2'R,3'S) for optimal potency. X-ray crystallographic analysis has been used to determine the binding mode of the inhibitors to the HIV-1 protease.


Assuntos
Carbamatos/síntese química , Inibidores da Protease de HIV/síntese química , Protease de HIV/química , Modelos Moleculares , Tiazepinas/síntese química , Carbamatos/química , Cristalografia por Raios X , Desenho de Fármacos , Inibidores da Protease de HIV/química , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Estereoisomerismo , Relação Estrutura-Atividade , Tiazepinas/química
18.
Bioorg Med Chem Lett ; 20(14): 4065-8, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20547452

RESUMO

A series of HIV-1 protease inhibitors containing an epsilon substituted lysinol backbone was synthesized. Two novel synthetic routes using N-boc-L-glutamic acid alpha-benzyl ester and 2,6-diaminopimelic acid were developed. Incorporation of this epsilon substituent enabled access to the S2 pocket of the enzyme, affording high potency inhibitors. Modeling studies and synthetic efforts suggest the potency increase is due to both conformational bias and van der Waals interactions with the S2 pocket.


Assuntos
Inibidores da Protease de HIV/farmacologia , Lisina/análogos & derivados , Inibidores da Protease de HIV/química , Modelos Moleculares , Relação Estrutura-Atividade
19.
Protein Expr Purif ; 71(2): 231-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20060474

RESUMO

Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) plays an essential role in the life cycle of the virus. Therefore, RT has been a primary target in the development of antiviral agents against HIV-1. Given the prevalence of resistant viruses, evaluation of the resistance profile of potential drug candidates is a key step in drug development. A simplified RT purification protocol would facilitate this process, as it provides an efficient method by which to purify RT variants for compound evaluation. Traditional purification protocols require the use of several columns to purify untagged RT. The entire procedure usually requires at least one week to complete. Herein, we report two novel methods that enable us to purify highly active RT in either one or two steps. First, a one-step purification protocol was developed by employing an affinity column that was prepared by conjugating an RNase H specific inhibitor (RNHI) with NHS-activated resin. Cell lysate containing RT was loaded onto the column followed by washing in the presence of 2mM Mn(2+). The RT retained in the column was eluted after soaking overnight in 10mM EDTA to retrieve the Mn(2+). In the other method, a vector was constructed that encodes RT fused to cleavable intein and AviTag (a biotin tag) sequences at the C-terminus. Cell lysate containing biotinylated RT was passed through a DE-52 column and then loaded onto an avidin column. Untagged RT was released from the column by reductive cleavage of the intein by DTT. These two methods significantly shorten the time required to purify untagged WT and mutant RTs.


Assuntos
Antivirais/farmacologia , Cromatografia de Afinidade/métodos , Transcriptase Reversa do HIV/isolamento & purificação , HIV-1/efeitos dos fármacos , Antivirais/uso terapêutico , Sequência de Bases , Vetores Genéticos/efeitos dos fármacos , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , Humanos , Ribonuclease H/genética
20.
Anal Biochem ; 373(1): 1-8, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18022380

RESUMO

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) with its cofactor NS4A is a pivotal enzyme for the replication of HCV. Inhibition of NS3-4A protease activity has been validated as an antiviral target in clinical studies of inhibitors of the enzyme. We have developed a sensitive time-resolved fluorescence (TRF) assay capable of detecting very low NS3-4A concentrations. A depsipeptide substrate is used that contains a europium-cryptate moiety and an efficient quenching group, QSY-7. The TRF assay is at least 30-fold more sensitive than a fluorescence energy transfer (FRET) assay and allows evaluation of NS3 protease inhibitors in reactions catalyzed by low enzyme concentrations (30 pM). Use of low enzyme concentrations allows for accurate measurement of inhibition by compounds with subnanomolar inhibition constants. The inhibitory potency of the potent protease inhibitor, BILN-2061, is significantly greater than previously reported. The ability to accurately determine inhibitory potency in reactions with low picomolar concentrations of NS3-4A is crucially important to allow valid comparisons between potent inhibitors. Studies of the interaction of NS3 with its NS4A cofactor at low enzyme concentration also reveal that the protease activity is salt dependent. This salt dependence of the enzyme activity is not present when high enzyme concentrations are used in the FRET assay.


Assuntos
Hepacivirus/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Fluorescência , Transferência Ressonante de Energia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...