Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572985

RESUMO

This paper presents the synthesis of Fe-Co-Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of Fe-Co-Ni nanocomposites. The initial hydroxides of Fe-Co-Ni combinations were prepared by the co-precipitation method from nitrate precursors and precipitated using alkali. The reduction process was carried out by hydrogen in the temperature range of 300-500 °C under isothermal conditions. The nanocomposites had metallic and intermetallic phases with different lattice parameter values due to the increase in Fe content. In this paper, we showed that the values of the magnetic parameters of nanocomposites can be controlled in the ranges of MS = 7.6-192.5 Am2/kg, Mr = 0.4-39.7 Am2/kg, Mr/Ms = 0.02-0.32, and HcM = 4.72-60.68 kA/m by regulating the composition and reduction temperature of the Fe-Co-Ni composites. Due to the reduction process, drastic variations in the magnetic features result from the intermetallic and metallic face formation. The variation in magnetic characteristics is guided by the reduction degree, particle size growth, and crystallinity enhancement. Moreover, the reduction of the surface spins fraction of the nanocomposites under their growth induced an increase in the saturation magnetization. This is the first report where the influence of Fe content on the Fe-Co-Ni ternary system phase content and magnetic properties was evaluated. The Fe-Co-Ni ternary nanocomposites obtained by co-precipitation, followed by the hydrogen reduction led to the formation of better magnetic materials for various magnetically coupled device applications.

2.
Anal Chim Acta ; 897: 81-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515008

RESUMO

Nanocrystalline potassium polytitanates K2O·nTiO2·mH2O represent a new type of semiconducting compounds which are characterized by a high specific surface that makes them promising for use in gas sensors. In this work, we have studied potassium polytitanate mesoporous nanoparticle agglomerates placed over a SiO2/Si substrate equipped with multiple coplanar electrodes to measure the electrical response to various organic vapors, 1000 ppm of concentration, mixed with air by impedance spectrometry in range of the 10(-2)-10(6) Hz. The recorded impedance data for each sensor segment are associated with RC components of an equivalent circuit which are applied to selectively recognize the test vapors exploiting a "multisensor array" approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...