Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543414

RESUMO

This article will focus on the issue of protection against the pathogenic biofilm development on steel surfaces within the food sectors, highlighting steel's prominence as a material choice in these areas. Pathogenic microorganism-based biofilms present significant health hazards in the food industry. Current scientific research offers a variety of solutions to the problem of protecting metal surfaces in contact with food from the growth of pathogenic microorganisms. One promising strategy to prevent bacterial growth involves applying a polymeric layer to metal surfaces, which can function as either an antiadhesive barrier or a bactericidal agent. Thus, the review aims to thoroughly examine the application of antibacterial polymer coatings on steel, a key material in contact with food, summarizing research advancements in this field. The investigation into polymer antibacterial coatings is organized into three primary categories: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, and antifouling coatings. Antibacterial properties of the studied types of coatings are determined not only by their composition, but also by the methods for applying them to metal and coating surfaces. A review of the current literature indicates that coatings based on polymers substantially enhance the antibacterial properties of metallic surfaces. Furthermore, these coatings contribute additional benefits including improved corrosion resistance, enhanced aesthetic appeal, and the provision of unique design elements.

2.
Polymers (Basel) ; 16(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257024

RESUMO

Three-phase polymer composites are promising materials for creating electronic device components. The qualitative and quantitative composition of such composites has a significant effect on their functional, in particular dielectric properties. In this study, ceramic filler K2Ni0.93Ti7.07O16 (KNTO) with Ag coating as conductive additive (0.5, 1.0, 2.5 wt.%) was introduced into the polyvinylidene difluoride (PVDF) polymer matrix in amounts of 7.5, 15, 22.5, and 30 vol.%. to optimize the dielectric constant and dielectric loss tangent. The filler was characterized by X-ray phase analysis, Fourier-transform infrared spectroscopy and Scanning electron microscopy methods. The dielectric constant, dielectric loss tangent, and conductivity of three-phase composites KNTO@Ag-PVDF were studied in comparison with two-phase composites KNTO-PVDF in the frequency range from 102 Hz to 106 Hz. The dielectric constant values of composites containing 7.5, 15, 22.5, and 30 vol.% filler were 12, 13, 17.4, 19.2 for pure KNTO and 13, 19, 25, 31 for KNTO@Ag filler (2.5 wt.%) at frequency 10 kHz. The dielectric loss tangent ranged from 0.111 to 0.340 at a filler content of 7.5 to 30 vol.%. A significantly enhanced balance of dielectric properties of PVDF-based composites was found with K2Ni0.93Ti7.07O16 as ceramic filler for 1 wt.% of silver. Composites KNTO@Ag(1 wt.%)-PVDF can be applied as dielectrics for passive elements of flexible electronics.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630875

RESUMO

Effective low-grade waste heat harvesting and its conversion into electric energy by the means of thermoelectrochemical cells (TECs) are a strong theme in the field of renewable energy investigation. Despite considerable scientific research, TECs have not yet been practically applied due to the high cost of electrode materials and low effectiveness levels. A large hypothetical Seebeck coefficient allow the harvest of the low-grade waste heat and, particularly, to use TECs for collecting human body heat. This paper demonstrates the investigation of estimated hypothetical Seebeck coefficient dependency on KOH electrolyte concentration for TECs with hollow nanostructured Ni/NiO microsphere electrodes. It proposes a thermoelectrochemical cell with power density of 1.72 W·m-2 and describes the chemistry of electrodes and near-electrode space. Also, the paper demonstrates a decrease in charge transfer resistance from 3.5 to 0.52 Ω and a decrease in capacitive behavior with increasing electrolyte concentration due to diffusion effects.

4.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513337

RESUMO

The xerogels based on the aqueous solutions of urea in potassium silicate liquid glass (PSLG) were produced by CO2 bubbling and investigated. The structure and chemical composition of the obtained materials were analyzed. Using the SEM, XRD, IR-FT, DSC, and low energy local EDS analysis, it was recognized that the dried gels (xerogels) contained three forms of urea: oval crystals of regular shape appeared onto the surface of xerogel particles; fibrous crystals were located in the silicate matrix; and molecules/ions were incorporated into the silicate matrix. It was shown that an increase in [(NH2)2CO] in the gel-forming system promoted increased contents in crystalline forms of urea as well as the diameter of the fiber-shaped urea crystals. A rate of the urea release in water from the granulated xerogels containing 5.8, 12.6, and 17.9 wt.% of urea was determined by the photometric method. It was determined that the obtained urea-containing xerogels were characterized with a slow release of urea, which continued up to 120 days, and could be used as controlled release fertilizers containing useful nutrients (N, K).

5.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421083

RESUMO

Low-temperature (350 °C) vitrification in a KNO3-NaNO3-KHSO4-NH4H2PO4 system, containing various additives to improve the chemical durability of the obtained material, was investigated. It was shown that a glass-forming system with 4.2-8.4 wt.% Al nitrate admixtures could form stable and transparent glasses, whereas the addition of H3BO3 produced a glass-matrix composite containing BPO4 crystalline inclusions. Mg nitrate admixtures inhibited the vitrification process and only allowed obtaining glass-matrix composites with combinations with Al nitrate and boric acid. Using ICP and low-energy EDS point analyses, it was recognized that all the obtained materials contained nitrate ions in their structure. Various combinations of the abovementioned additives favored liquid phase immiscibility and crystallization of BPO4, KMgH(PO3)3, with some unidentified crystalline phases in the melt. The mechanism of the vitrification processes taking place in the investigated systems, as well as the water resistance of the obtained materials, was analyzed. It was shown that the glass-matrix composites based on the (K,Na)NO3-KHSO4-P2O5 glass-forming system, containing Al and Mg nitrates and B2O3 additives, had increased water resistance, in comparison with the parent glass composition, and could be used as controlled-release fertilizers containing the main useful nutrients (K, P, N, Na, S, B, and Mg).

6.
Polymers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365588

RESUMO

The possibility of using microwave radiation at various stages of obtaining an unsaturated polyester composite modified with carbon nanotubes was studied. The optimal content of MWCNTs in the system was experimentally selected, having the best effect on the strength of the composite. The effect of the microwave field on the properties of a polyester composite during the microwave treatment of an oligomer, a polymerized composite, and MWCNTs before their addition into the oligomer was studied. The processes of the structure formation, the structure of the composite, the effect of the microwave radiation on MWCNTs, and the thermal stability of the resulting composites were considered.

7.
Polymers (Basel) ; 14(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36365603

RESUMO

New three-phase composites, destined for application as dielectrics in the manufacturing of passive elements of flexible electronics, and based on polymer (PVDF) matrix filled with powdered ceramics of the hollandite-like (KFTO(H)) structure (5.0; 7.5; 15; 30 vol.%) and carbon (MWCNT) additive (0.5; 1.0; 1.5 wt.% regarding the KFTO(H) amount), were obtained and studied by XRD, FTIR and SEM methods. Chemical composition and stoichiometric formula of the ceramic material synthesized by the sol-gel method were confirmed with the XRF analysis data. The influence of the ceramic and carbon fillers on the electrical properties of the obtained composites was investigated using impedance spectroscopy. The optimal combination of permittivity and dielectric loss values at 1 kHz (77.6 and 0.104, respectively) was found for the compositions containing K1.6Fe1.6Ti6.4O16 (30 vol.%) and MWCNTs (1.0 wt.% regarding the amount of ceramic filler).

8.
Polymers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160438

RESUMO

Polymer matrix composites based on ED-20 epoxy resin, hollandite K1.6(Ni0.8Ti7.2)O16 and carbon nanotubes with a variable content of 0.107; 0.213 and 0.425 vol.% were obtained for the first time. Initial components and composites produced were characterized by XRD, XRA, FTIR, SEM and Raman spectroscopy. The dielectric properties of composite materials were measured by impedance spectroscopy and determined by the volume ratio of the composite components, primarily by the concentration of CNTs. At a CNT content of 0.213 vol.% (before percolation threshold), the maximum synergistic effect of carbon and ceramic fillers on the dielectric properties of a composite based on the epoxy resin was found. Three-phase composites based on epoxy resin, with a maximum permittivity at a minimum dielectric loss tangent, are promising materials for elements of an electronic component base.

9.
Data Brief ; 31: 105770, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32548220

RESUMO

Low-grade waste heat harvesting and conversion into electric energy is an important way of renewable energy development and thermo-electrochemical cells are promising devices to solve this problem. In this paper, we report original data on the current density and maximum output power dependents on voltage of the thermos-cells with nickel hollow microspheres electrodes and different electrolyte concentration (from 0.1 to 3.0 mol/l)which exhibit excellent hypothetical Seebeck coefficient and accordingly high open-circuit voltage values at low source temperature. The composition, microstructure and morphology of the hollow nickel microspheres based electrodes are included here. Because of the low cost of nickel based thermo-cells could be commercially feasible for harvesting low-quality thermal energy, in this connection, the raw data of measurements of their properties are given here. The data is related to "High Seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes", Burmistrov et al., Renewable Energy, 2020 [1].

10.
Phys Rev Lett ; 123(5): 056803, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491314

RESUMO

A quantum magnetic impurity of spin S at the edge of a two-dimensional time reversal invariant topological insulator may give rise to backscattering. We study here the shot noise associated with the backscattering current for arbitrary S. Our full analytical solution reveals that for S>1/2 the Fano factor may be arbitrarily large, reflecting bunching of large batches of electrons. By contrast, we rigorously prove that for S=1/2 the Fano factor is bounded between 1 and 2, generalizing earlier studies.

11.
Phys Rev Lett ; 123(2): 026804, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386525

RESUMO

Hydrodynamic charge transport is at the center of recent research efforts. Of particular interest is the nondissipative Hall viscosity, which conveys topological information in clean gapped systems. The prevalence of disorder in the real world calls for a study of its effect on viscosity. Here we address this question, both analytically and numerically, in the context of disordered noninteracting 2D electrons. Analytically, we employ the self-consistent Born approximation, explicitly taking into account the modification of the single-particle density of states and the elastic transport time due to the Landau quantization. The reported results interpolate smoothly between the limiting cases of a weak (strong) magnetic field and strong (weak) disorder. In the regime of a weak magnetic field our results describe the quantum (Shubnikov-de Haas type) oscillations of the dissipative and Hall viscosity. For strong magnetic fields we characterize the effects of the disorder-induced broadening of the Landau levels on the viscosity coefficients. This is supplemented by numerical calculations for a few filled Landau levels. Our results show that the Hall viscosity is surprisingly robust to disorder.

12.
Nanomaterials (Basel) ; 7(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257073

RESUMO

The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these conditions. While the gas sensitivity is nowadays advanced by employing the materials at nano-dimensional domain, the room temperature operation might be targeted via the application of layered solid-state electrolytes, like titanates. Here, we report gas-sensitive properties of potassium titanate whiskers, which are placed over a multielectrode chip by drop casting from suspension to yield a matrix mono-layer of varied density. The material synthesis conditions are straightforward both to get stable single-crystalline quasi-one-dimensional whiskers with a great extent of potassium replacement and to favor the increase of specific surface area of the structures. The whisker layer is found to be sensitive towards volatile organic compounds (ethanol, isopropanol, acetone) in the mixture with air at room temperature. The vapor identification is obtained via processing the vector signal generated by sensor array of the multielectrode chip with the help of pattern recognition algorithms.

13.
Sensors (Basel) ; 17(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820490

RESUMO

We report a deposition of the tin oxide/hydroxide nanostructured layer by the potentiodynamic method from acidic nitrate solutions directly over the substrate, equipped with multiple strip electrodes which is employed as a gas-analytical multisensor array chip. The electrochemical synthesis is set to favor the growth of the tin oxide/hydroxide phase, while the appearance of metallic Sn is suppressed by cycling. The as-synthesized tin oxide/hydroxide layer is characterized by mesoporous morphology with grains, 250-300 nm diameter, which are further crystallized into fine SnO2 poly-nanocrystals following heating to 300 °C for 24 h just on the chip. The fabricated layer exhibits chemiresistive properties under exposure to organic vapors, which allows the generation of a multisensor vector signal capable of selectively distinguishing various vapors.

14.
Phys Rev Lett ; 114(17): 176806, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978252

RESUMO

The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...