Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104849, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224964

RESUMO

In microbial biofilms, bacterial cells are encased in a self-produced matrix of polymers (e.g., exopolysaccharides) that enable surface adherence and protect against environmental stressors. For example, the wrinkly spreader phenotype of Pseudomonas fluorescens colonizes food/water sources and human tissue to form robust biofilms that can spread across surfaces. This biofilm largely consists of bacterial cellulose produced by the cellulose synthase proteins encoded by the wss (WS structural) operon, which also occurs in other species, including pathogenic Achromobacter species. Although phenotypic mutant analysis of the wssFGHI genes has previously shown that they are responsible for acetylation of bacterial cellulose, their specific roles remain unknown and distinct from the recently identified cellulose phosphoethanolamine modification found in other species. Here, we have purified the C-terminal soluble form of WssI from P. fluorescens and Achromobacter insuavis and demonstrated acetylesterase activity with chromogenic substrates. The kinetic parameters (kcat/KM values of 13 and 8.0 M-1 s-1, respectively) indicate that these enzymes are up to four times more catalytically efficient than the closest characterized homolog, AlgJ from the alginate synthase. Unlike AlgJ and its cognate alginate polymer, WssI also demonstrated acetyltransferase activity onto cellulose oligomers (e.g., cellotetraose to cellohexaose) with multiple acetyl donor substrates (p-nitrophenyl acetate, 4-methylumbelliferyl acetate, and acetyl-CoA). Finally, a high-throughput screen identified three low micromolar WssI inhibitors that may be useful for chemically interrogating cellulose acetylation and biofilm formation.


Assuntos
Acetiltransferases , Biofilmes , Humanos , Acetiltransferases/metabolismo , Celulose/metabolismo , Polímeros , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo
2.
Biochemistry ; 60(47): 3659-3669, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34762795

RESUMO

Biofilms are communities of self-enmeshed bacteria in a matrix of exopolysaccharides. The widely distributed human pathogen and commensal Escherichia coli produces a biofilm matrix composed of phosphoethanolamine (pEtN)-modified cellulose and amyloid protein fibers, termed curli. The addition of pEtN to the cellulose exopolysaccharide is accomplished by the action of the pEtN transferase, BcsG, and is essential for the overall integrity of the biofilm. Here, using the synthetic co-substrates p-nitrophenyl phosphoethanolamine and ß-d-cellopentaose, we demonstrate using an in vitro pEtN transferase assay that full activity of the pEtN transferase domain of BcsG from E. coli (EcBcsGΔN) requires Zn2+ binding, a catalytic nucleophile/acid-base arrangement (Ser278/Cys243/His396), disulfide bond formation, and other newly uncovered essential residues. We further confirm that EcBcsGΔN catalysis proceeds by a ping-pong bisubstrate-biproduct reaction mechanism and displays inefficient kinetic behavior (kcat/KM = 1.81 × 10-4 ± 2.81 × 10-5 M-1 s-1), which is typical of exopolysaccharide-modifying enzymes in bacteria. Thus, the results presented, especially with respect to donor binding (as reflected by KM), have importantly broadened our understanding of the substrate profile and catalytic mechanism of this class of enzymes, which may aid in the development of inhibitors targeting BcsG or other characterized members of the pEtN transferase family, including the intrinsic and mobile colistin resistance factors.


Assuntos
Celulose/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Etanolaminas/metabolismo , Proteínas de Membrana/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Biofilmes , Celulose/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Etanolaminas/química , Proteínas de Membrana/química , Polissacarídeos Bacterianos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química
3.
J Biol Chem ; 295(18): 6225-6235, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152228

RESUMO

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.


Assuntos
Escherichia coli/enzimologia , Etanolaminofosfotransferase/metabolismo , Glucosiltransferases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Dissulfetos/química , Etanolaminofosfotransferase/química , Glucosiltransferases/química , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...