Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38883799

RESUMO

Microglia are the resident immune cells of the central nervous system (CNS). We and others have shown that the inflammatory response of microglia is partially regulated by the immunoproteasome, an inducible form of the proteasome responsible for the generation of major histocompatibility complex (MHC) class I epitopes. While the role of the proteasome in the adaptive immune system is well established, emerging evidence suggests the immunoproteasome may have discrete functions in the innate immune response. Here, we show that inhibiting the immunoproteasome reduces the IFNγ-dependent induction of complement activator C1q, suppresses phagocytosis, and alters the cytokine expression profile in a microglial cell line and microglia derived from human inducible pluripotent stem cells. Moreover, we show that the immunoproteasome regulates the degradation of IκBα, a modulator of NF-κB signaling. Finally, we demonstrate that NADH prevents induction of the immunoproteasome, representing a potential pathway to suppress immunoproteasome-dependent immune responses.

2.
Glia ; 70(7): 1337-1358, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35373853

RESUMO

Survival motor neuron (SMN) protein deficiency results in loss of alpha motor neurons and subsequent muscle atrophy in patients with spinal muscular atrophy (SMA). Reactive microglia have been reported in SMA mice and depleting microglia rescues the number of proprioceptive synapses, suggesting a role in SMA pathology. Here, we explore the contribution of lymphocytes on microglia reactivity in SMA mice and investigate how SMN deficiency alters the reactive profile of human induced pluripotent stem cell (iPSC)-derived microglia. We show that microglia adopt a reactive morphology in spinal cords of SMA mice. Ablating lymphocytes did not alter the reactive morphology of SMA microglia and did not improve the survival or motor function of SMA mice, indicating limited impact of peripheral immune cells on the SMA phenotype. We found iPSC-derived SMA microglia adopted an amoeboid morphology and displayed a reactive transcriptome profile, increased cell migration, and enhanced phagocytic activity. Importantly, cell morphology and electrophysiological properties of motor neurons were altered when they were incubated with conditioned media from SMA microglia. Together, these data reveal that SMN-deficient microglia adopt a reactive profile and exhibit an exaggerated inflammatory response with potential impact on SMA neuropathology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Deficiência de Proteína , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Microglia/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Deficiência de Proteína/metabolismo , Deficiência de Proteína/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
3.
Hum Mol Genet ; 31(17): 2989-3000, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35419606

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced expression of the survival motor neuron (SMN) protein. Current disease-modifying therapies increase SMN levels and dramatically improve survival and motor function of SMA patients. Nevertheless, current treatments are not cures and autopsy data suggest that SMN induction is variable. Our group and others have shown that combinatorial approaches that target different modalities can improve outcomes in rodent models of SMA. Here we explore if slowing SMN protein degradation and correcting SMN splicing defects could synergistically increase SMN production and improve the SMA phenotype in model mice. We show that co-administering ML372, which inhibits SMN ubiquitination, with an SMN-modifying antisense oligonucleotide (ASO) increases SMN production in SMA cells and model mice. In addition, we observed improved spinal cord, neuromuscular junction and muscle pathology when ML372 and the ASO were administered in combination. Importantly, the combinatorial approach resulted in increased motor function and extended survival of SMA mice. Our results demonstrate that a combination of treatment modalities synergistically increases SMN levels and improves pathophysiology of SMA model mice over individual treatment.


Assuntos
Atrofia Muscular Espinal , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Camundongos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/terapia , Oligonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética
4.
Glia ; 70(5): 989-1004, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35088910

RESUMO

Spinal muscular atrophy (SMA), a pediatric genetic disorder, is characterized by the profound loss of spinal cord motor neurons and subsequent muscle atrophy and death. Although the mechanisms underlying motor neuron loss are not entirely clear, data from our work and others support the idea that glial cells contribute to disease pathology. GATA6, a transcription factor that we have previously shown to be upregulated in SMA astrocytes, is negatively regulated by SMN (survival motor neuron) and can increase the expression of inflammatory regulator NFκB. In this study, we identified upregulated GATA6 as a contributor to increased activation, pro-inflammatory ligand production, and neurotoxicity in spinal-cord patterned astrocytes differentiated from SMA patient induced pluripotent stem cells. Reducing GATA6 expression in SMA astrocytes via lentiviral infection ameliorated these effects to healthy control levels. Additionally, we found that SMA astrocytes contribute to SMA microglial phagocytosis, which was again decreased by lentiviral-mediated knockdown of GATA6. Together these data identify a role of GATA6 in SMA astrocyte pathology and further highlight glia as important targets of therapeutic intervention in SMA.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Animais , Astrócitos/metabolismo , Criança , Modelos Animais de Doenças , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/uso terapêutico
5.
J Cachexia Sarcopenia Muscle ; 12(4): 1098-1116, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115448

RESUMO

BACKGROUND: Spinal muscular atrophy is an inherited neurodegenerative disease caused by insufficient levels of the survival motor neuron (SMN) protein. Recently approved treatments aimed at increasing SMN protein levels have dramatically improved patient survival and have altered the disease landscape. While restoring SMN levels slows motor neuron loss, many patients continue to have smaller muscles and do not achieve normal motor milestones. While timing of treatment is important, it remains unclear why SMN restoration is insufficient to fully restore muscle size and function. We and others have shown that SMN-deficient muscle precursor cells fail to efficiently fuse into myotubes. However, the role of SMN in myoblast fusion is not known. METHODS: In this study, we show that SMN-deficient myoblasts readily fuse with wild-type myoblasts, demonstrating fusion competency. Conditioned media from wild type differentiating myoblasts do not rescue the fusion deficit of SMN-deficient cells, suggesting that compromised fusion may primarily be a result of altered membrane dynamics at the cell surface. Transcriptome profiling of skeletal muscle from SMN-deficient mice revealed altered expression of cell surface fusion molecules. Finally, using cell and mouse models, we investigate if myoblast fusion can be rescued in SMN-deficient myoblast and improve the muscle pathology in SMA mice. RESULTS: We found reduced expression of the muscle fusion proteins myomaker (P = 0.0060) and myomixer (P = 0.0051) in the muscle of SMA mice. Suppressing SMN expression in C2C12 myoblast cells reduces expression of myomaker (35% reduction; P < 0.0001) and myomixer, also known as myomerger and minion, (30% reduction; P < 0.0001) and restoring SMN levels only partially restores myomaker and myomixer expression. Ectopic expression of myomixer improves myofibre number (55% increase; P = 0.0006) and motor function (35% decrease in righting time; P = 0.0089) in SMA model mice and enhances motor function (82% decrease in righting time; P < 0.0001) and extends survival (28% increase; P < 0.01) when administered in combination with an antisense oligonucleotide that increases SMN protein levels. CONCLUSIONS: Here, we identified reduced expression of muscle fusion proteins as a key factor in the fusion deficits of SMN-deficient myoblasts. This discovery provides a novel target to improve SMA muscle pathology and motor function, which in combination with SMN increasing therapy could enhance clinical outcomes for SMA patients.


Assuntos
Doenças Neurodegenerativas , Animais , Diferenciação Celular , Humanos , Proteínas de Membrana , Camundongos , Neurônios Motores , Proteínas Musculares , Mioblastos
6.
Cell Rep ; 35(6): 109125, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979606

RESUMO

Spinal muscular atrophy (SMA) is a debilitating neurological disorder marked by degeneration of spinal motor neurons and muscle atrophy. SMA results from mutations in survival motor neuron 1 (SMN1), leading to deficiency of survival motor neuron (SMN) protein. Current therapies increase SMN protein and improve patient survival but have variable improvements in motor function, making it necessary to identify complementary strategies to further improve disease outcomes. Here, we perform a genome-wide RNAi screen using a luciferase-based activity reporter and identify genes involved in regulating SMN gene expression, RNA processing, and protein stability. We show that reduced expression of Transcription Export complex components increases SMN levels through the regulation of nuclear/cytoplasmic RNA transport. We also show that the E3 ligase, Neurl2, works cooperatively with Mib1 to ubiquitinate and promote SMN degradation. Together, our screen uncovers pathways through which SMN expression is regulated, potentially revealing additional strategies to treat SMA.


Assuntos
Técnicas Genéticas/normas , Genômica/métodos , Ensaios de Triagem em Larga Escala/métodos , Neurônios Motores/metabolismo , Interferência de RNA/fisiologia , Humanos
7.
Skelet Muscle ; 10(1): 16, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32384912

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of alpha motor neurons and skeletal muscle atrophy. The disease is caused by mutations of the SMN1 gene that result in reduced functional expression of survival motor neuron (SMN) protein. SMN is ubiquitously expressed, and there have been reports of cardiovascular dysfunction in the most severe SMA patients and animal models of the disease. In this study, we directly assessed the function of cardiomyocytes isolated from a severe SMA model mouse and cardiomyocytes generated from patient-derived IPSCs. Consistent with impaired cardiovascular function at the very early disease stages in mice, heart failure markers such as brain natriuretic peptide were significantly elevated. Functionally, cardiomyocyte relaxation kinetics were markedly slowed and the T50 for Ca2+ sequestration increased to 146 ± 4 ms in SMN-deficient cardiomyocytes from 126 ± 4 ms in wild type cells. Reducing SMN levels in cardiomyocytes from control patient IPSCs slowed calcium reuptake similar to SMA patent-derived cardiac cells. Importantly, restoring SMN increased calcium reuptake rate. Taken together, these results indicate that SMN deficiency impairs cardiomyocyte function at least partially through intracellular Ca2+ cycling dysregulation.


Assuntos
Sinalização do Cálcio , Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia Muscular Espinal/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Atrofia Muscular Espinal/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
8.
Sci Rep ; 7(1): 9365, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839214

RESUMO

Microglia regulate the brain microenvironment by sensing damage and neutralizing potentially harmful insults. Disruption of central nervous system (CNS) homeostasis results in transition of microglia to a reactive state characterized by morphological changes and production of cytokines to prevent further damage to CNS tissue. Immunoproteasome levels are elevated in activated microglia in models of stroke, infection and traumatic brain injury, though the exact role of the immunoproteasome in neuropathology remains poorly defined. Using gene expression analysis and native gel electrophoresis we characterize the expression and assembly of the immunoproteasome in microglia following interferon-gamma exposure. Transcriptome analysis suggests that the immunoproteasome regulates multiple features of microglial activation including nitric oxide production and phagocytosis. We show that inhibiting the immunoproteasome attenuates expression of pro-inflammatory cytokines and suppresses interferon-gamma-dependent priming of microglia. These results imply that targeting immunoproteasome function following CNS injury may attenuate select microglial activity to improve the pathophysiology of neurodegenerative conditions or the progress of inflammation-mediated secondary injury following neurotrauma.


Assuntos
Interferon gama/metabolismo , Microglia/imunologia , Microglia/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Linhagem Celular , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Janus Quinases/metabolismo , Camundongos , Microglia/efeitos da radiação , Complexo de Endopeptidases do Proteassoma/efeitos da radiação , Transcriptoma
9.
J Med Chem ; 60(11): 4594-4610, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481536

RESUMO

Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.


Assuntos
Anilidas/farmacologia , Benzamidas/farmacologia , Isoxazóis/farmacologia , Sondas Moleculares , Atrofia Muscular Espinal/terapia , Processamento de Proteína Pós-Traducional , Quinolonas/farmacologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Tiazóis/farmacologia , Anilidas/farmacocinética , Anilidas/uso terapêutico , Área Sob a Curva , Benzamidas/farmacocinética , Benzamidas/uso terapêutico , Linhagem Celular , Descoberta de Drogas , Meia-Vida , Humanos , Isoxazóis/farmacocinética , Isoxazóis/uso terapêutico , Estabilidade Proteica , Quinolonas/farmacocinética , Quinolonas/uso terapêutico , Relação Estrutura-Atividade , Tiazóis/farmacocinética , Tiazóis/uso terapêutico
10.
JCI Insight ; 1(19): e88427, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27882347

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease and one of the leading inherited causes of infant mortality. SMA results from insufficient levels of the survival motor neuron (SMN) protein, and studies in animal models of the disease have shown that increasing SMN protein levels ameliorates the disease phenotype. Our group previously identified and optimized a new series of small molecules, with good potency and toxicity profiles and reasonable pharmacokinetics, that were able to increase SMN protein levels in SMA patient-derived cells. We show here that ML372, a representative of this series, almost doubles the half-life of residual SMN protein expressed from the SMN2 locus by blocking its ubiquitination and subsequent degradation by the proteasome. ML372 increased SMN protein levels in muscle, spinal cord, and brain tissue of SMA mice. Importantly, ML372 treatment improved the righting reflex and extended survival of a severe mouse model of SMA. These results demonstrate that slowing SMN degradation by selectively inhibiting its ubiquitination can improve the motor phenotype and lifespan of SMA model mice.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Proteína 1 de Sobrevivência do Neurônio Motor/química , Ubiquitinação , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos
11.
Mol Genet Genomic Med ; 4(2): 126-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27066513

RESUMO

Genetics and genomic medicine in Mali: challenges and future perspectives.

12.
Neurobiol Dis ; 88: 118-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792401

RESUMO

The development of therapeutics for neurological disorders is constrained by limited access to the central nervous system (CNS). ATP-binding cassette (ABC) transporters, particularly P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed on the luminal surface of capillaries in the CNS and transport drugs out of the endothelium back into the blood against the concentration gradient. Survival motor neuron (SMN) protein, which is deficient in spinal muscular atrophy (SMA), is a target of the ubiquitin proteasome system. Inhibiting the proteasome in a rodent model of SMA with bortezomib increases SMN protein levels in peripheral tissues but not the CNS, because bortezomib has poor CNS penetrance. We sought to determine if we could inhibit SMN degradation in the CNS of SMA mice with a combination of bortezomib and the ABC transporter inhibitor tariquidar. In cultured cells we show that bortezomib is a substrate of P-gp. Mass spectrometry analysis demonstrated that intraperitoneal co-administration of tariquidar increased the CNS penetrance of bortezomib, and reduced proteasome activity in the brain and spinal cord. This correlated with increased SMN protein levels and improved survival and motor function of SMA mice. These findings show that CNS penetrance of treatment for this neurological disorder can be improved by inhibiting drug efflux at the blood-brain barrier.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Bortezomib/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Antineoplásicos/farmacologia , Sistema Nervoso Central/citologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Fatores de Tempo , Transfecção
13.
Mol Ther ; 24(5): 937-45, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26755334

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a currently untreatable adult-onset neuromuscular disease caused by expansion of a polyglutamine repeat in the androgen receptor (AR). In SBMA, as in other polyglutamine diseases, a toxic gain of function in the mutant protein is an important factor in the disease mechanism; therefore, reducing the mutant protein holds promise as an effective treatment strategy. In this work, we evaluated a microRNA (miRNA) to reduce AR expression. From a list of predicted miRNAs that target human AR, we selected microRNA-298 (miR-298) for its ability to downregulate AR mRNA and protein levels when transfected in cells overexpressing wild-type and mutant AR and in SBMA patient-derived fibroblasts. We showed that miR-298 directly binds to the 3'-untranslated region of the human AR transcript, and counteracts AR toxicity in vitro. Intravenous delivery of miR-298 with adeno-associated virus serotype 9 vector resulted in efficient transduction of muscle and spinal cord and amelioration of the disease phenotype in SBMA mice. Our findings support the development of miRNAs as a therapeutic strategy for SBMA and other neurodegenerative disorders caused by toxic proteins.


Assuntos
Regulação para Baixo , Terapia Genética/métodos , MicroRNAs/genética , Atrofia Muscular Espinal/terapia , Receptores Androgênicos/genética , Regiões 3' não Traduzidas , Administração Intravenosa , Animais , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Humanos , Células MCF-7 , Camundongos , Atrofia Muscular Espinal/genética
15.
Hum Mol Genet ; 23(18): 4745-57, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24760765

RESUMO

While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility.


Assuntos
Adesões Focais/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Miogenina/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Fibras Musculares Esqueléticas/citologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
16.
Ann Neurol ; 75(4): 525-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515897

RESUMO

OBJECTIVE: Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood in North America, Europe, and Asia. SMA is usually caused by deletions of the survival motor neuron 1 (SMN1) gene. A closely related gene, SMN2, modifies the disease severity. SMA carriers have only 1 copy of SMN1 and are relatively common (1 in 30-50) in populations of European and Asian descent. SMN copy numbers and SMA carrier frequencies have not been reliably estimated in Malians and other sub-Saharan Africans. METHODS: We used a quantitative polymerase chain reaction assay to determine SMN1 and SMN2 copy numbers in 628 Malians, 120 Nigerians, and 120 Kenyans. We also explored possible mechanisms for SMN1 and SMN2 copy number differences in Malians, and investigated their effects on SMN mRNA and protein levels. RESULTS: The SMA carrier frequency in Malians is 1 in 209, lower than in Eurasians. Malians and other sub-Saharan Africans are more likely to have ≥3 copies of SMN1 than Eurasians, and more likely to lack SMN2 than Europeans. There was no evidence of gene conversion, gene locus duplication, or natural selection from malaria resistance to account for the higher SMN1 copy numbers in Malians. High SMN1 copy numbers were not associated with increased SMN mRNA or protein levels in human cell lines. INTERPRETATION: SMA carrier frequencies are much lower in sub-Saharan Africans than in Eurasians. This finding is important to consider in SMA genetic counseling in individuals with black African ancestry.


Assuntos
Variações do Número de Cópias de DNA/genética , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , África Subsaariana/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , RNA Mensageiro/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética
17.
J Biol Chem ; 288(38): 27100-27111, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23926098

RESUMO

The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin.


Assuntos
Amiloide , Peptídeos , Príons , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Amiloide/genética , Amiloide/metabolismo , Animais , Humanos , Células PC12 , Peptídeos/genética , Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Proteômica/métodos , Ratos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dodecilsulfato de Sódio/química , Ureia/química
18.
Hum Mutat ; 34(10): 1357-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857908

RESUMO

We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain.


Assuntos
Proteínas Mitocondriais/genética , Mutação , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Adolescente , Sequência de Aminoácidos , Encéfalo/metabolismo , Encéfalo/patologia , Homozigoto , Humanos , Espaço Intracelular/metabolismo , Imageamento por Ressonância Magnética , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Deleção de Sequência , Paraplegia Espástica Hereditária/metabolismo
19.
Mol Biol Cell ; 24(12): 1863-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23615451

RESUMO

Spinal muscular atrophy is an inherited motor neuron disease that results from a deficiency of the survival of motor neuron (SMN) protein. SMN is ubiquitinated and degraded through the ubiquitin proteasome system (UPS). We have previously shown that proteasome inhibition increases SMN protein levels, improves motor function, and reduces spinal cord, muscle, and neuromuscular junction pathology of spinal muscular atrophy (SMA) mice. Specific targets in the UPS may be more efficacious and less toxic. In this study, we show that the E3 ubiquitin ligase, mind bomb 1 (Mib1), interacts with and ubiquitinates SMN and facilitates its degradation. Knocking down Mib1 levels increases SMN protein levels in cultured cells. Also, knocking down the Mib1 orthologue improves neuromuscular function in Caenorhabditis elegans deficient in SMN. These findings demonstrate that Mib1 ubiquitinates and catalyzes the degradation of SMN, and thus represents a novel therapeutic target for SMA.


Assuntos
Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células HEK293 , Humanos , Células Híbridas , Camundongos , Neuroblastoma/patologia , Músculos Faríngeos/metabolismo , Músculos Faríngeos/fisiopatologia , Ligação Proteica , Proteólise , Interferência de RNA , Medula Espinal/citologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Am J Hum Genet ; 91(6): 1095-102, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217327

RESUMO

Cowchock syndrome (CMTX4) is a slowly progressive X-linked recessive disorder with axonal neuropathy, deafness, and cognitive impairment. The disease locus was previously mapped to an 11 cM region at chromosome X: q24-q26. Exome sequencing of an affected individual from the originally described family identified a missense change c.1478A>T (p.Glu493Val) in AIFM1, the gene encoding apoptosis-inducing factor (AIF) mitochondrion-associated 1. The change is at a highly conserved residue and cosegregated with the phenotype in the family. AIF is an FAD-dependent NADH oxidase that is imported into mitochondria. With apoptotic insults, a N-terminal transmembrane linker is cleaved off, producing a soluble fragment that is released into the cytosol and then transported into the nucleus, where it triggers caspase-independent apoptosis. Another AIFM1 mutation that predicts p.Arg201del has recently been associated with severe mitochondrial encephalomyopathy in two infants by impairing oxidative phosphorylation. The c.1478A>T (p.Glu493Val) mutation found in the family reported here alters the redox properties of the AIF protein and results in increased cell death via apoptosis, without affecting the activity of the respiratory chain complexes. Our findings expand the spectrum of AIF-related disease and provide insight into the effects of AIFM1 mutations.


Assuntos
Fator de Indução de Apoptose/genética , Doença de Charcot-Marie-Tooth/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Apoptose/genética , Fator de Indução de Apoptose/química , Fator de Indução de Apoptose/metabolismo , Sequência de Bases , Encéfalo/patologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/metabolismo , Éxons , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Neuroimagem , Oxirredução , Linhagem , Conformação Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...