Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(22): 2614-2626.e7, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37633272

RESUMO

The zebrafish is amenable to a variety of genetic approaches. However, lack of conditional deletion alleles limits stage- or cell-specific gene knockout. Here, we applied an existing protocol to establish a floxed allele for gata2a but failed to do so due to off-target integration and incomplete knockin. To address these problems, we applied simultaneous co-targeting with Cas12a to insert loxP sites in cis, together with transgenic counterscreening and comprehensive molecular analysis, to identify off-target insertions and confirm targeted knockins. We subsequently used our approach to establish endogenously floxed alleles of foxc1a, rasa1a, and ruvbl1, each in a single generation. We demonstrate the utility of these alleles by verifying Cre-dependent deletion, which yielded expected phenotypes in each case. Finally, we used the floxed gata2a allele to demonstrate an endothelial autonomous requirement in lymphatic valve development. Together, our results provide a framework for routine generation and application of endogenously floxed alleles in zebrafish.


Assuntos
Integrases , Peixe-Zebra , Camundongos , Animais , Camundongos Knockout , Peixe-Zebra/genética , Alelos , Integrases/genética , Técnicas de Inativação de Genes
2.
Circ Res ; 131(12): 980-1000, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36367103

RESUMO

BACKGROUND: RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS: We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS: We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS: Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.


Assuntos
Cálcio , Miocárdio , Proteínas de Ligação a RNA , Proteínas de Peixe-Zebra , Animais , Humanos , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Nat Commun ; 13(1): 5877, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198703

RESUMO

Hypoplastic left heart syndrome (HLHS) is characterized by underdevelopment of left sided structures including the ventricle, valves, and aorta. Prevailing paradigm suggests that HLHS is a multigenic disease of co-occurring phenotypes. Here, we report that zebrafish lacking two orthologs of the RNA binding protein RBFOX2, a gene linked to HLHS in humans, display cardiovascular defects overlapping those in HLHS patients including ventricular, valve, and aortic deficiencies. In contrast to current models, we demonstrate that these structural deficits arise secondary to impaired pump function as these phenotypes are rescued when Rbfox is specifically expressed in the myocardium. Mechanistically, we find diminished expression and alternative splicing of sarcomere and mitochondrial components that compromise sarcomere assembly and mitochondrial respiration, respectively. Injection of human RBFOX2 mRNA restores cardiovascular development in rbfox mutant zebrafish, while HLHS-linked RBFOX2 variants fail to rescue. This work supports an emerging paradigm for HLHS pathogenesis that centers on myocardial intrinsic defects.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Animais , Humanos , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/patologia , Miocárdio/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Front Cell Dev Biol ; 10: 800594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178388

RESUMO

Cardiomyocyte proliferation is an important source of new myocardium during heart development and regeneration. Consequently, mutations in drivers of cardiomyocyte proliferation cause congenital heart disease, and infarcted human hearts scar because cardiomyocytes exit the cell cycle postnatally. To boost cardiomyocyte proliferation in either setting, critical regulators must be identified. Through an ENU screen in zebrafish, the liebeskummer (lik) mutant was isolated and described as having elevated cardiomyocyte numbers during embryogenesis. The lik mutation results in a three amino acid insertion into Ruvbl2, a highly conserved ATPase. Because both gain- and loss-of-function properties have been described for ruvbl2 lik , it remains unclear whether Ruvbl2 positively or negatively regulates cardiomyocyte proliferation. Here, we demonstrate that Ruvbl2 is a suppressor of cardiomyocyte proliferation during zebrafish heart development and regeneration. First, we confirmed speculation that augmented cardiomyocyte numbers in ruvbl2 lik/lik hearts arise by hyperproliferation. To characterize bona fide ruvbl2 null animals, we created a ruvbl2 locus deletion allele (ruvbl2 Δ ). Like ruvbl2 lik/lik mutants, ruvbl2 Δ/Δ and compound heterozygote ruvbl2 lik/Δ animals display ventricular hyperplasia, demonstrating that lik is a loss of function allele and that ruvbl2 represses cardiomyocyte proliferation. This activity is autonomous because constitutive myocardial overexpression of Ruvbl2 is sufficient to suppress cardiomyocyte proliferation in control hearts and rescue the hyperproliferation observed in ruvbl2 Δ/Δ mutant hearts. Lastly, heat-shock inducible overexpression of Ruvbl2 suppresses cardiomyocyte proliferation during heart regeneration and leads to scarring. Together, our data demonstrate that Ruvbl2 functions autonomously as a suppressor of cardiomyocyte proliferation during both zebrafish heart development and adult heart regeneration.

5.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098309

RESUMO

Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFß) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFß signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFß signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFß signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.


Assuntos
Aneurisma da Aorta Torácica , Proteínas de Ligação a TGF-beta Latente/metabolismo , Síndrome de Marfan , Proteínas de Peixe-Zebra/metabolismo , Animais , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Dilatação , Humanos , Larva/metabolismo , Proteínas de Ligação a TGF-beta Latente/genética , Síndrome de Marfan/patologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-34187805

RESUMO

Heart regeneration is a remarkable process whereby regrowth of damaged cardiac tissue rehabilitates organ anatomy and function. Unfortunately, the human heart is highly resistant to regeneration, which creates a shortage of cardiomyocytes in the wake of ischemic injury, and explains, in part, why coronary artery disease remains a leading cause of death worldwide. Luckily, a detailed blueprint for achieving therapeutic heart regeneration already exists in nature because several lower vertebrate species successfully regenerate amputated or damaged heart muscle through robust cardiomyocyte proliferation. A growing number of species are being interrogated for cardiac regenerative potential, and several commonalities have emerged between those animals showing high or low innate capabilities. In this review, we provide a historical perspective on the field, discuss how regenerative potential is influenced by cardiomyocyte properties, mitogenic signals, and chromatin accessibility, and highlight unanswered questions under active investigation. Ultimately, delineating why heart regeneration occurs preferentially in some organisms, but not in others, will uncover novel therapeutic inroads for achieving cardiac restoration in humans.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/fisiologia , Regeneração , Animais , Proliferação de Células , Cromatina/metabolismo , Humanos , Transdução de Sinais
7.
Dis Model Mech ; 12(10)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31548281

RESUMO

Although the zebrafish embryo is a powerful animal model of human heart failure, the methods routinely employed to monitor cardiac function produce rough approximations that are susceptible to bias and inaccuracies. We developed and validated a deep learning-based image-analysis platform for automated extraction of volumetric parameters of cardiac function from dynamic light-sheet fluorescence microscopy (LSFM) images of embryonic zebrafish hearts. This platform, the Cardiac Functional Imaging Network (CFIN), automatically delivers rapid and accurate assessments of cardiac performance with greater sensitivity than current approaches.This article has an associated First Person interview with the first author of the paper.


Assuntos
Aprendizado Profundo , Coração/fisiologia , Peixe-Zebra/fisiologia , Animais , Automação , Embrião não Mamífero/diagnóstico por imagem , Embrião não Mamífero/fisiologia , Coração/embriologia , Imageamento Tridimensional , Redes Neurais de Computação , Reprodutibilidade dos Testes , Peixe-Zebra/embriologia
8.
Dev Cell ; 50(6): 675-676, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31550460

RESUMO

In this issue of Developmental Cell, Ren et al. (2019) identify the embryonic origin of cardiac pacemaker cells in zebrafish and implicate Wnt5b in promoting their differentiation. Furthermore, canonical Wnt activation in human stem cell-derived cardiac progenitors produces functional pacemaker cells in vitro, advancing the therapeutic potential of biological pacemakers.


Assuntos
Via de Sinalização Wnt , Animais , Diferenciação Celular , Humanos , Mesoderma , Miócitos Cardíacos , Proteínas Wnt
9.
Pediatr Cardiol ; 40(7): 1410-1418, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31399780

RESUMO

Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.


Assuntos
Miocárdio/citologia , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Proteínas de Ligação a RNA/genética , Peixe-Zebra
10.
Development ; 146(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427288

RESUMO

Deciphering the genetic and epigenetic regulation of cardiomyocyte proliferation in organisms that are capable of robust cardiac renewal, such as zebrafish, represents an attractive inroad towards regenerating the human heart. Using integrated high-throughput transcriptional and chromatin analyses, we have identified a strong association between H3K27me3 deposition and reduced sarcomere and cytoskeletal gene expression in proliferative cardiomyocytes following cardiac injury in zebrafish. To move beyond an association, we generated an inducible transgenic strain expressing a mutant version of histone 3, H3.3K27M, that inhibits H3K27me3 catalysis in cardiomyocytes during the regenerative window. Hearts comprising H3.3K27M-expressing cardiomyocytes fail to regenerate, with wound edge cells showing heightened expression of structural genes and prominent sarcomeres. Although cell cycle re-entry was unperturbed, cytokinesis and wound invasion were significantly compromised. Collectively, our study identifies H3K27me3-mediated silencing of structural genes as requisite for zebrafish heart regeneration and suggests that repression of similar structural components in the border zone of an infarcted human heart might improve its regenerative capacity.


Assuntos
Inativação Gênica , Coração/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Regeneração/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Proliferação de Células , Citocinese , Citoesqueleto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metilação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo
11.
Elife ; 82019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31237233

RESUMO

Lower vertebrate and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through the reprogramming of pre-existing cardiomyocytes. However, how cardiac injury initiates signaling pathways controlling this regenerative reprogramming remains to be defined. Here, we utilize in vivo biophysical and genetic fate mapping zebrafish studies to reveal that altered hemodynamic forces due to cardiac injury activate a sequential endocardial-myocardial signaling cascade to direct cardiomyocyte reprogramming and heart regeneration. Specifically, these altered forces are sensed by the endocardium through the mechanosensitive channel Trpv4 to control Klf2a transcription factor expression. Consequently, Klf2a then activates endocardial Notch signaling which results in the non-cell autonomous initiation of myocardial Erbb2 and BMP signaling to promote cardiomyocyte reprogramming and heart regeneration. Overall, these findings not only reveal how the heart senses and adaptively responds to environmental changes due to cardiac injury, but also provide insight into how flow-mediated mechanisms may regulate cardiomyocyte reprogramming and heart regeneration.


Assuntos
Endocárdio/fisiologia , Traumatismos Cardíacos/patologia , Hemodinâmica , Mecanotransdução Celular , Miócitos Cardíacos/fisiologia , Regeneração , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Notch/metabolismo , Canais de Cátion TRPV/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
12.
Cell Rep ; 26(3): 546-554.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650349

RESUMO

Previous studies demonstrate that the regenerative zebrafish heart responds to injury by upregulating Notch receptors in the endocardium and epicardium. Moreover, global suppression of Notch activity following injury impairs cardiomyocyte proliferation and induces scarring. However, the lineage-specific requirements for Notch signaling and full array of downstream targets remain unidentified. Here, we demonstrate that inhibition of endocardial Notch signaling following ventricular amputation compromises cardiomyocyte proliferation and stimulates fibrosis. RNA sequencing uncovered reduced levels of two transcripts encoding secreted Wnt antagonists, Wif1 and Notum1b, in Notch-suppressed hearts. Like Notch receptors, wif1 and notum1b are induced following injury in the endocardium and epicardium. Small-molecule-mediated activation of Wnt signaling is sufficient to impair cardiomyocyte proliferation and induce scarring. Last, Wnt pathway suppression partially restored cardiomyocyte proliferation in hearts experiencing endocardial Notch inhibition. Taken together, our data demonstrate that Notch signaling supports cardiomyocyte proliferation by dampening myocardial Wnt activity during zebrafish heart regeneration.


Assuntos
Coração/fisiopatologia , Miócitos Cardíacos/metabolismo , Receptores Notch/metabolismo , Via de Sinalização Wnt/genética , Animais , Proliferação de Células , Camundongos , Peixe-Zebra
13.
Cell Rep ; 24(5): 1342-1354.e5, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067987

RESUMO

Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.


Assuntos
Síndrome da Deleção 22q11/patologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Faringe/embriologia , Síndrome da Deleção 22q11/genética , Animais , Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Faringe/citologia , Fenótipo , Proteínas com Domínio T/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Dev Cell ; 44(4): 433-446.e7, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29486195

RESUMO

Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity.


Assuntos
Animais Geneticamente Modificados/fisiologia , Coração/embriologia , Infarto do Miocárdio/patologia , Miocárdio/citologia , Poliploidia , Regeneração/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/embriologia , Proliferação de Células , Células Cultivadas , Coração/fisiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
Circulation ; 137(20): 2152-2165, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29348261

RESUMO

BACKGROUND: Defining conserved molecular pathways in animal models of successful cardiac regeneration could yield insight into why adult mammals have inadequate cardiac regeneration after injury. Insight into the transcriptomic landscape of early cardiac regeneration from model organisms will shed light on evolutionarily conserved pathways in successful cardiac regeneration. METHODS: Here we describe a cross-species transcriptomic screen in 3 model organisms for cardiac regeneration: axolotl, neonatal mice, and zebrafish. Apical resection to remove ≈10% to 20% of ventricular mass was carried out in these model organisms. RNA-sequencing analysis was performed on the hearts harvested at 3 time points: 12, 24, and 48 hours after resection. Sham surgery was used as internal control. RESULTS: Genes associated with inflammatory processes were found to be upregulated in a conserved manner. Complement receptors (activated by complement components, part of the innate immune system) were found to be highly upregulated in all 3 species. This approach revealed induction of gene expression for complement 5a receptor 1 in the regenerating hearts of zebrafish, axolotls, and mice. Inhibition of complement 5a receptor 1 significantly attenuated the cardiomyocyte proliferative response to heart injury in all 3 species. Furthermore, after left ventricular apical resection, the cardiomyocyte proliferative response was diminished in mice with genetic deletion of complement 5a receptor 1. CONCLUSIONS: These data reveal that activation of complement 5a receptor 1 mediates an evolutionarily conserved response that promotes cardiomyocyte proliferation after cardiac injury and identify complement pathway activation as a common pathway of successful heart regeneration.


Assuntos
Evolução Molecular , Coração/fisiologia , Receptor da Anafilatoxina C5a/metabolismo , Regeneração/fisiologia , Ambystoma mexicanum , Animais , Animais Recém-Nascidos , Proliferação de Células , Perfilação da Expressão Gênica , Ontologia Genética , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Cíclicos/farmacologia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/genética , Análise de Sequência de RNA , Troponina T/análise , Peixe-Zebra
16.
Development ; 144(24): 4616-4624, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061637

RESUMO

During mammalian embryogenesis, cardiac progenitor cells constituting the second heart field (SHF) give rise to the right ventricle and primitive outflow tract (OFT). In zebrafish, previous lineage-tracing and mutant analyses suggested that SHF ventricular and OFT progenitors co-migrate to the arterial pole of the zebrafish heart tube soon after their specification in the nkx2.5+ field of anterior lateral plate mesoderm (ALPM). Using additional prospective lineage tracing, we demonstrate that while SHF ventricular progenitors migrate directly to the arterial pole, OFT progenitors become temporarily sequestered in the mesodermal cores of pharyngeal arch 2 (PA2), where they downregulate nkx2.5 expression. While there, they intermingle with precursors for PA2-derived head muscles (HMs) and hypobranchial artery endothelium, which we demonstrate are co-specified with SHF progenitors in the nkx2.5+ ALPM. Soon after their sequestration in PA2, OFT progenitors migrate to the arterial pole of the heart and differentiate into OFT lineages. Lastly, we demonstrate that SHF ventricular and OFT progenitors exhibit unique sensitivities to a mutation in fgf8a Our data highlight novel aspects of SHF, OFT and HM development in zebrafish that will inform mechanistic interpretations of cardiopharyngeal phenotypes in zebrafish models of human congenital disorders.


Assuntos
Cardiopatias Congênitas/embriologia , Ventrículos do Coração/embriologia , Células-Tronco/citologia , Peixe-Zebra/embriologia , Animais , Região Branquial/metabolismo , Linhagem da Célula , Movimento Celular/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/metabolismo , Proteína Homeobox Nkx-2.5/biossíntese , Mesoderma/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
17.
Regeneration (Oxf) ; 4(3): 105-123, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28979788

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Compared to other organs such as the liver, the adult human heart lacks the capacity to regenerate on a macroscopic scale after injury. As a result, myocardial infarctions are responsible for approximately half of all cardiovascular related deaths. In contrast, the zebrafish heart regenerates efficiently upon injury through robust myocardial proliferation. Therefore, deciphering the mechanisms that underlie the zebrafish heart's endogenous regenerative capacity represents an exciting avenue to identify novel therapeutic strategies for inducing regeneration of the human heart. This review provides a historical overview of adult zebrafish heart regeneration. We summarize 15 years of research, with a special focus on recent developments from this fascinating field. We discuss experimental findings that address fundamental questions of regeneration research. What is the origin of regenerated muscle? How is regeneration controlled from a genetic and molecular perspective? How do different cell types interact to achieve organ regeneration? Understanding natural models of heart regeneration will bring us closer to answering the ultimate question: how can we stimulate myocardial regeneration in humans?

18.
Cell Rep ; 20(4): 973-983, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746880

RESUMO

The pharyngeal arch arteries (PAAs) are transient embryonic blood vessels that mature into critical segments of the aortic arch and its branches. Although defects in PAA development cause life-threating congenital cardiovascular defects, the molecular mechanisms that orchestrate PAA morphogenesis remain unclear. Through small-molecule screening in zebrafish, we identified TGF-ß signaling as indispensable for PAA development. Specifically, chemical inhibition of the TGF-ß type I receptor ALK5 impairs PAA development because nkx2.5+ PAA progenitor cells fail to differentiate into tie1+ angioblasts. Consistent with this observation, we documented a burst of ALK5-mediated Smad3 phosphorylation within PAA progenitors that foreshadows angioblast emergence. Remarkably, premature induction of TGF-ß receptor activity stimulates precocious angioblast differentiation, thereby demonstrating the sufficiency of this pathway for initiating the PAA progenitor to angioblast transition. More broadly, these data uncover TGF-ß as a rare signaling pathway that is necessary and sufficient for angioblast lineage commitment.


Assuntos
Artérias/citologia , Região Branquial/irrigação sanguínea , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
19.
J Histochem Cytochem ; 64(11): 687-714, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27680670

RESUMO

Lectins are carbohydrate-binding proteins commonly used as biochemical and histochemical tools to study glycoconjugate (glycoproteins, glycolipids) expression patterns in cells, tissues, including mammalian hearts. However, lectins have received little attention in zebrafish ( Danio rerio) and giant danio ( Devario aequipinnatus) heart studies. Here, we sought to determine the binding patterns of six commonly used lectins-wheat germ agglutinin (WGA), Ulex europaeus agglutinin, Bandeiraea simplicifolia lectin (BS lectin), concanavalin A (Con A), Ricinus communis agglutinin I (RCA I), and Lycopersicon esculentum agglutinin (tomato lectin)-in these hearts. Con A showed broad staining in the myocardium. WGA stained cardiac myocyte borders, with binding markedly stronger in the compact heart and bulbus. BS lectin, which stained giant danio coronaries, was used to measure vascular reconstruction during regeneration. However, BS lectin reacted poorly in zebrafish. RCA I stained the compact heart of both fish. Tomato lectin stained the giant danio, and while low reactivity was seen in the zebrafish ventricle, staining was observed in their transitional cardiac myocytes. In addition, we observed unique staining patterns in the developing zebrafish heart. Lectins' ability to reveal differential glycoconjugate expression in giant danio and zebrafish hearts suggests they can serve as simple but important tools in studies of developing, adult, and regenerating fish hearts.


Assuntos
Cyprinidae/metabolismo , Glicoconjugados/metabolismo , Miocárdio/metabolismo , Lectinas de Plantas/química , Animais , Vasos Coronários/metabolismo , Embrião não Mamífero/metabolismo , Ligação Proteica , Coloração e Rotulagem , Peixe-Zebra/metabolismo
20.
Nature ; 534(7609): 700-4, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357797

RESUMO

Many organs are composed of complex tissue walls that are structurally organized to optimize organ function. In particular, the ventricular myocardial wall of the heart comprises an outer compact layer that concentrically encircles the ridge-like inner trabecular layer. Although disruption in the morphogenesis of this myocardial wall can lead to various forms of congenital heart disease and non-compaction cardiomyopathies, it remains unclear how embryonic cardiomyocytes assemble to form ventricular wall layers of appropriate spatial dimensions and myocardial mass. Here we use advanced genetic and imaging tools in zebrafish to reveal an interplay between myocardial Notch and Erbb2 signalling that directs the spatial allocation of myocardial cells to their proper morphological positions in the ventricular wall. Although previous studies have shown that endocardial Notch signalling non-cell-autonomously promotes myocardial trabeculation through Erbb2 and bone morphogenetic protein (BMP) signalling, we discover that distinct ventricular cardiomyocyte clusters exhibit myocardial Notch activity that cell-autonomously inhibits Erbb2 signalling and prevents cardiomyocyte sprouting and trabeculation. Myocardial-specific Notch inactivation leads to ventricles of reduced size and increased wall thickness because of excessive trabeculae, whereas widespread myocardial Notch activity results in ventricles of increased size with a single-cell-thick wall but no trabeculae. Notably, this myocardial Notch signalling is activated non-cell-autonomously by neighbouring Erbb2-activated cardiomyocytes that sprout and form nascent trabeculae. Thus, these findings support an interactive cellular feedback process that guides the assembly of cardiomyocytes to morphologically create the ventricular myocardial wall and more broadly provide insight into the cellular dynamics of how diverse cell lineages organize to create form.


Assuntos
Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Morfogênese , Miócitos Cardíacos/citologia , Peixe-Zebra/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem da Célula , Retroalimentação Fisiológica , Ventrículos do Coração/anatomia & histologia , Proteína Jagged-2 , Miócitos Cardíacos/metabolismo , Tamanho do Órgão , Organogênese , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...