Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38639409

RESUMO

Blood vessels serve as intermediate conduits for the extension of sympathetic axons towards target tissues, while also acting as crucial targets for their homeostatic processes encompassing the regulation of temperature, blood pressure, and oxygen availability. How sympathetic axons innervate not only blood vessels but also a wide array of target tissues is not clear. Here we show that in embryonic skin, after the establishment of co-branching between sensory nerves and blood vessels, sympathetic axons invade the skin alongside these sensory nerves and extend their branches towards these blood vessels covered by vascular smooth muscle cells (VSMCs). Our mosaic labeling technique for sympathetic axons shows that collateral branching predominantly mediates the innervation of VSMC-covered blood vessels by sympathetic axons. The expression of nerve growth factor (NGF), previously known to induce collateral axon branching in culture, can be detected in the vascular smooth muscle cell (VSMC)-covered blood vessels, as well as sensory nerves. Indeed, VSMC-specific Ngf knockout leads to a significant decrease of collateral branching of sympathetic axons innervating VSMC-covered blood vessels. These data suggest that VSMC-derived NGF serves as an inductive signal for collateral branching of sympathetic axons innervating blood vessels in the embryonic skin.


Assuntos
Músculo Liso Vascular , Fator de Crescimento Neural , Pele , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/inervação , Fator de Crescimento Neural/metabolismo , Camundongos , Pele/inervação , Pele/irrigação sanguínea , Pele/metabolismo , Miócitos de Músculo Liso/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/inervação , Vasos Sanguíneos/metabolismo , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/metabolismo , Camundongos Knockout
2.
Curr Top Dev Biol ; 152: 115-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707209

RESUMO

Structural birth defects are a common cause of abnormalities in newborns. While there are cases of structural birth defects arising due to monogenic defects or environmental exposures, many birth defects are likely caused by a complex interaction between genes and the environment. A structural birth defect with complex etiology is congenital diaphragmatic hernias (CDH), a common and often lethal disruption in diaphragm development. Mutations in more than 150 genes have been implicated in CDH pathogenesis. Although there is generally less evidence for a role for environmental factors in the etiology of CDH, deficiencies in maternal vitamin A and its derivative embryonic retinoic acid are strongly associated with CDH. However, the incomplete penetrance of CDH-implicated genes and environmental factors such as vitamin A deficiency suggest that interactions between genes and environment may be necessary to cause CDH. In this review, we examine the genetic and environmental factors implicated in diaphragm and CDH development. In addition, we evaluate the potential for gene-environment interactions in CDH etiology, focusing on the potential interactions between the CDH-implicated gene, Gata4, and maternal vitamin A deficiency.


Assuntos
Hérnias Diafragmáticas Congênitas , Deficiência de Vitamina A , Recém-Nascido , Humanos , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/patologia , Deficiência de Vitamina A/complicações , Deficiência de Vitamina A/genética , Deficiência de Vitamina A/patologia , Diafragma/anormalidades , Diafragma/patologia , Tretinoína , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...