Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37462916

RESUMO

Immunoglobulin A (IgA) is secreted into breast milk and is critical for both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity; however, heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery. Surprisingly, we also observed intradonor variability in the BrmIgA response to closely related bacterial isolates. Conversely, longitudinal analysis showed that the antibacterial BrmIgA reactivity was relatively stable through time, even between sequential infants, indicating that mammary gland IgA responses are durable. Together, our study demonstrates that the antibacterial BrmIgA reactivity displays interindividual heterogeneity but intraindividual stability. These findings have important implications for how breast milk shapes the development of the preterm infant microbiota and protects against necrotizing enterocolitis.


Assuntos
Recém-Nascido Prematuro , Leite Humano , Lactente , Feminino , Recém-Nascido , Humanos , Imunoglobulina A , Bactérias , Antibacterianos
2.
Cell Mol Gastroenterol Hepatol ; 16(2): 287-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172822

RESUMO

BACKGROUND & AIMS: The colonic epithelium requires continuous renewal by crypt resident intestinal stem cells (ISCs) and transit-amplifying (TA) cells to maintain barrier integrity, especially after inflammatory damage. The diet of high-income countries contains increasing amounts of sugar, such as sucrose. ISCs and TA cells are sensitive to dietary metabolites, but whether excess sugar affects their function directly is unknown. METHODS: Here, we used a combination of 3-dimensional colonoids and a mouse model of colon damage/repair (dextran sodium sulfate colitis) to show the direct effect of sugar on the transcriptional, metabolic, and regenerative functions of crypt ISCs and TA cells. RESULTS: We show that high-sugar conditions directly limit murine and human colonoid development, which is associated with a reduction in the expression of proliferative genes, adenosine triphosphate levels, and the accumulation of pyruvate. Treatment of colonoids with dichloroacetate, which forces pyruvate into the tricarboxylic acid cycle, restored their growth. In concert, dextran sodium sulfate treatment of mice fed a high-sugar diet led to massive irreparable damage that was independent of the colonic microbiota and its metabolites. Analyses on crypt cells from high-sucrose-fed mice showed a reduction in the expression of ISC genes, impeded proliferative potential, and increased glycolytic potential without a commensurate increase in aerobic respiration. CONCLUSIONS: Taken together, our results indicate that short-term, excess dietary sucrose can directly modulate intestinal crypt cell metabolism and inhibit ISC/TA cell regenerative proliferation. This knowledge may inform diets that better support the treatment of acute intestinal injury.


Assuntos
Colite , Açúcares da Dieta , Camundongos , Humanos , Animais , Dextranos , Colite/metabolismo , Piruvatos
3.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993366

RESUMO

Immunoglobulin A (IgA) is secreted into breast milk and is critical to both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity, however heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery. We also observed intra-donor variability in the BrmIgA response to closely related bacterial isolates. Conversely, longitudinal analysis showed that the anti-bacterial BrmIgA reactivity was relatively stable through time, even between sequential infants, indicating that mammary gland IgA responses are durable. Together, our study demonstrates that the anti-bacterial BrmIgA reactivity displays inter-individual heterogeneity but intra-individual stability. These findings have important implications for how breast milk shapes the development of the infant microbiota and protects against Necrotizing Enterocolitis. Summary: We analyze the ability of breast milk-derived Immunoglobulin A (IgA) antibodies to bind the infant intestinal microbiota. We discover that each mother secretes into their breast milk a distinct set of IgA antibodies that are stably maintained over time.

4.
Evol Med Public Health ; 10(1): 266-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712084

RESUMO

Background and Objectives: A key strategy for resolving the antibiotic resistance crisis is the development of new drugs with antimicrobial properties. The engineered cationic antimicrobial peptide WLBU2 (also known as PLG0206) is a promising broad-spectrum antimicrobial compound that has completed Phase I clinical studies. It has activity against Gram-negative and Gram-positive bacteria including infections associated with biofilm. No definitive mechanisms of resistance to WLBU2 have been identified. Methodology: Here, we used experimental evolution under different levels of mutation supply and whole genome sequencing (WGS) to detect the genetic pathways and probable mechanisms of resistance to this peptide. We propagated populations of wild-type and hypermutator Pseudomonas aeruginosa in the presence of WLBU2 and performed WGS of evolved populations and clones. Results: Populations that survived WLBU2 treatment acquired a minimum of two mutations, making the acquisition of resistance more difficult than for most antibiotics, which can be tolerated by mutation of a single target. Major targets of resistance to WLBU2 included the orfN and pmrB genes, previously described to confer resistance to other cationic peptides. More surprisingly, mutations that increase aggregation such as the wsp pathway were also selected despite the ability of WLBU2 to kill cells growing in a biofilm. Conclusions and implications: The results show how experimental evolution and WGS can identify genetic targets and actions of new antimicrobial compounds and predict pathways to resistance of new antibiotics in clinical practice.

5.
Immunity ; 54(12): 2812-2824.e4, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861182

RESUMO

The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Colo/patologia , Neoplasias Colorretais/imunologia , Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/fisiologia , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células T Auxiliares Foliculares/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
6.
Immunity ; 54(8): 1745-1757.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34348118

RESUMO

Environmental enteric dysfunction (EED) is a gastrointestinal inflammatory disease caused by malnutrition and chronic infection. EED is associated with stunting in children and reduced efficacy of oral vaccines. To study the mechanisms of oral vaccine failure during EED, we developed a microbiota- and diet-dependent mouse EED model. Analysis of E. coli-labile toxin vaccine-specific CD4+ T cells in these mice revealed impaired CD4+ T cell responses in the small intestine and but not the lymph nodes. EED mice exhibited increased frequencies of small intestine-resident RORγT+FOXP3+ regulatory T (Treg) cells. Targeted deletion of RORγT from Treg cells restored small intestinal vaccine-specific CD4 T cell responses and vaccine-mediated protection upon challenge. However, ablation of RORγT+FOXP3+ Treg cells made mice more susceptible to EED-induced stunting. Our findings provide insight into the poor efficacy of oral vaccines in EED and highlight how RORγT+FOXP3+ Treg cells can regulate intestinal immunity while leaving systemic responses intact.


Assuntos
Toxinas Bacterianas/imunologia , Vacinas contra Escherichia coli/imunologia , Gastroenteropatias/imunologia , Intestino Delgado/imunologia , Linfócitos T Reguladores/imunologia , Administração Oral , Animais , Linhagem Celular , Modelos Animais de Doenças , Drosophila , Escherichia coli/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Gastroenteropatias/microbiologia , Gastroenteropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Vacinação
7.
J Immunol ; 205(6): 1479-1487, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900885

RESUMO

The evolution of the immune system, diet, and the microbiome are interconnected. Dietary metabolites modulate the cells of the immune system both directly and indirectly via shifts in the composition of the intestinal microbiota and its products. As a result, overconsumption and malnutrition can have substantial effects on immune responses and inflammation. In resource-rich nations, diets high in processed foods, fat, and sugar can contribute to chronic inflammatory conditions, which are on the rise worldwide. Conversely, in resource-poor countries, malnutrition associated with food insecurity can lead to immunodeficiencies and shifts in the microbiome that drive intestinal inflammation. Developing a deeper understanding of the relationship between diet, microbiota, and the immune system is of huge importance, given its impact on inflammatory diseases and its potential as an easily modifiable mediator of immunomodulation.


Assuntos
Microbioma Gastrointestinal/imunologia , Sistema Imunitário/fisiologia , Fenômenos Fisiológicos da Nutrição/imunologia , Animais , Dieta , Dietoterapia , Humanos , Imunidade , Imunomodulação , Inflamação
8.
Cell Rep ; 29(8): 2270-2283.e7, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747600

RESUMO

Interleukin (IL)-17 signaling to the intestinal epithelium regulates the intestinal microbiome. Given the reported links between intestinal dysbiosis, bacterial translocation, and liver disease, we hypothesize that intestinal IL-17R signaling plays a critical role in mitigating hepatic inflammation. To test this, we study intestinal epithelium-specific IL-17RA-deficient mice in an immune-driven hepatitis model. At the naive state, these mice exhibit microbiome dysbiosis and increased translocation of bacterial products (CpG DNA), which drives liver IL-18 production. Upon disease induction, absence of enteric IL-17RA signaling exacerbates hepatitis and hepatocyte cell death. IL-18 is necessary for disease exacerbation and is associated with increased activated hepatic lymphocytes based on Ifng and Fasl expression. Thus, intestinal IL-17R regulates translocation of TLR9 ligands and constrains susceptibility to hepatitis. These data connect enteric Th17 signaling and the microbiome in hepatitis, with broader implications on the effects of impaired intestinal immunity and subsequent release of microbial products observed in other extra-intestinal pathologies.


Assuntos
Hepatite/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Microbiota/fisiologia , Receptores de Interleucina-17/metabolismo , Animais , Translocação Bacteriana/genética , Translocação Bacteriana/fisiologia , Hepatócitos/metabolismo , Camundongos , Microbiota/genética , Receptor Toll-Like 9/metabolismo
9.
Nat Med ; 25(7): 1110-1115, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209335

RESUMO

Neonates are protected from colonizing bacteria by antibodies secreted into maternal milk. Necrotizing enterocolitis (NEC) is a disease of neonatal preterm infants with high morbidity and mortality that is associated with intestinal inflammation driven by the microbiota1-3. The incidence of NEC is substantially lower in infants fed with maternal milk, although the mechanisms that underlie this benefit are not clear4-6. Here we show that maternal immunoglobulin A (IgA) is an important factor for protection against NEC. Analysis of IgA binding to fecal bacteria from preterm infants indicated that maternal milk was the predominant source of IgA in the first month of life and that a relative decrease in IgA-bound bacteria is associated with the development of NEC. Sequencing of IgA-bound and unbound bacteria revealed that before the onset of disease, NEC was associated with increasing domination by Enterobacteriaceae in the IgA-unbound fraction of the microbiota. Furthermore, we confirmed that IgA is critical for preventing NEC in a mouse model, in which pups that are reared by IgA-deficient mothers are susceptible to disease despite exposure to maternal milk. Our findings show that maternal IgA shapes the host-microbiota relationship of preterm neonates and that IgA in maternal milk is a critical and necessary factor for the prevention of NEC.


Assuntos
Enterocolite Necrosante/prevenção & controle , Imunoglobulina A/fisiologia , Adulto , Animais , Enterobacteriaceae/fisiologia , Enterocolite Necrosante/epidemiologia , Feminino , Interações entre Hospedeiro e Microrganismos , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...