Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1371096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694206

RESUMO

Introduction: The Aster-C protein (encoded by the Gramd1c gene) is an endoplasmic reticulum (ER) resident protein that has been reported to transport cholesterol from the plasma membrane to the ER. Although there is a clear role for the closely-related Aster-B protein in cholesterol transport and downstream esterification in the adrenal gland, the specific role for Aster-C in cholesterol homeostasis is not well understood. Here, we have examined whole body cholesterol balance in mice globally lacking Aster-C under low or high dietary cholesterol conditions. Method: Age-matched Gramd1c +/+ and Gramd1c -/- mice were fed either low (0.02%, wt/wt) or high (0.2%, wt/wt) dietarycholesterol and levels of sterol-derived metabolites were assessed in the feces, liver, and plasma. Results: Compared to wild type controls (Gramd1c +/+) mice, mice lackingGramd1c (Gramd1c -/-) have no significant alterations in fecal, liver, or plasma cholesterol. Given the potential role for Aster C in modulating cholesterol metabolism in diverse tissues, we quantified levels of cholesterol metabolites such as bile acids, oxysterols, and steroid hormones. Compared to Gramd1c +/+ controls, Gramd1c -/- mice had modestly reduced levels of select bile acid species and elevated cortisol levels, only under low dietary cholesterol conditions. However, the vast majority of bile acids, oxysterols, and steroid hormones were unaltered in Gramd1c -/- mice. Bulk RNA sequencing in the liver showed that Gramd1c -/- mice did not exhibit alterations in sterol-sensitive genes, but instead showed altered expression of genes in major urinary protein and cytochrome P450 (CYP) families only under low dietary cholesterol conditions. Discussion: Collectively, these data indicate nominal effects of Aster-C on whole body cholesterol transport and metabolism under divergent dietary cholesterol conditions. These results strongly suggest that Aster-C alone is not sufficient to control whole body cholesterol balance, but can modestly impact circulating cortisol and bile acid levels when dietary cholesterol is limited.

2.
J Biol Chem ; 299(11): 105299, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777156

RESUMO

Microbes living in the intestine can regulate key signaling processes in the central nervous system that directly impact brain health. This gut-brain signaling axis is partially mediated by microbe-host-dependent immune regulation, gut-innervating neuronal communication, and endocrine-like small molecule metabolites that originate from bacteria to ultimately cross the blood-brain barrier. Given the mounting evidence of gut-brain crosstalk, a new therapeutic approach of "psychobiotics" has emerged, whereby strategies designed to primarily modify the gut microbiome have been shown to improve mental health or slow neurodegenerative diseases. Diet is one of the most powerful determinants of gut microbiome community structure, and dietary habits are associated with brain health and disease. Recently, the metaorganismal (i.e., diet-microbe-host) trimethylamine N-oxide (TMAO) pathway has been linked to the development of several brain diseases including Alzheimer's, Parkinson's, and ischemic stroke. However, it is poorly understood how metaorganismal TMAO production influences brain function under normal physiological conditions. To address this, here we have reduced TMAO levels by inhibiting gut microbe-driven choline conversion to trimethylamine (TMA), and then performed comprehensive behavioral phenotyping in mice. Unexpectedly, we find that TMAO is particularly enriched in the murine olfactory bulb, and when TMAO production is blunted at the level of bacterial choline TMA lyase (CutC/D), olfactory perception is altered. Taken together, our studies demonstrate a previously underappreciated role for the TMAO pathway in olfactory-related behaviors.


Assuntos
Percepção Olfatória , Animais , Camundongos , Bactérias/metabolismo , Colina/metabolismo , Metilaminas/metabolismo , Feminino , Camundongos Endogâmicos C57BL
3.
J Virol ; 97(8): e0074923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37504572

RESUMO

Interferon-induced protein with tetratricopeptide repeats 2, Ifit2, is critical in restricting neurotropic murine-ß-coronavirus, RSA59 infection. RSA59 intracranial injection of Ifit2-deficient (-/-) compared to wild-type (WT) mice results in impaired acute microglial activation, reduced CX3CR1 expression, limited migration of peripheral lymphocytes into the brain, and impaired virus control followed by severe morbidity and mortality. While the protective role of Ifit2 is established for acute viral encephalitis, less is known about its influence during the chronic demyelinating phase of RSA59 infection. To understand this, RSA59 infected Ifit2-/- and Ifit2+/+ (WT) were observed for neuropathological outcomes at day 5 (acute phase) and 30 post-infection (chronic phase). Our study demonstrates that Ifit2 deficiency causes extensive RSA59 spread throughout the spinal cord gray and white matter, associated with impaired CD4+ T and CD8+ T cell infiltration. Further, the cervical lymph nodes of RSA59 infected Ifit2-/- mice showed reduced activation of CD4+ T cells and impaired IFNγ expression during acute encephalomyelitis. Interestingly, BBB integrity was better preserved in Ifit2-/- mice, as evidenced by tight junction protein Claudin-5 and adapter protein ZO-1 expression surrounding the meninges and blood vessels and decreased Texas red dye uptake, which may be responsible for reduced leukocyte infiltration. In contrast to sparse myelin loss in WT mice, the chronic disease phase in Ifit2-/- mice was associated with severe demyelination and persistent viral load, even at low inoculation doses. Overall, our study highlights that Ifit2 provides antiviral functions by promoting acute neuroinflammation and thereby aiding virus control and limiting severe chronic demyelination. IMPORTANCE Interferons execute their function by inducing specific genes collectively termed as interferon-stimulated genes (ISGs), among which interferon-induced protein with tetratricopeptide repeats 2, Ifit2, is known for restricting neurotropic viral replication and spread. However, little is known about its role in viral spread to the spinal cord and its associated myelin pathology. Toward this, our study using a neurotropic murine ß-coronavirus and Ifit2-deficient mice demonstrates that Ifit2 deficiency causes extensive viral spread throughout the gray and white matter of the spinal cord accompanied by impaired microglial activation and T cell infiltration. Furthermore, infected Ifit2-deficient mice showed impaired activation of T cells in the cervical lymph node and relatively intact blood-brain barrier integrity. Overall, Ifit2 plays a crucial role in mounting host immunity against neurotropic murine coronavirus in the acute phase while preventing mice from developing viral-induced severe chronic neuroinflammatory demyelination, the characteristic feature of human neurological disease multiple sclerosis (MS).


Assuntos
Infecções por Coronavirus , Esclerose Múltipla , Vírus da Hepatite Murina , Substância Branca , Camundongos , Humanos , Animais , Substância Branca/patologia , Vírus da Hepatite Murina/fisiologia , Bainha de Mielina , Interferons , Proteínas/genética , Medula Espinal/patologia , Esclerose Múltipla/patologia , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas Reguladoras de Apoptose/genética
4.
J Immunol ; 210(6): 721-731, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36695771

RESUMO

Besides antiviral functions, type I IFN expresses potent anti-inflammatory properties and is being widely used to treat certain autoimmune conditions, such as multiple sclerosis. In a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, administration of IFN-ß effectively attenuates the disease development. However, the precise mechanisms underlying IFN-ß-mediated treatment remain elusive. In this study, we report that IFN-induced protein with tetratricopeptide repeats 2 (Ifit2), a type I and type III IFN-stimulated gene, plays a previously unrecognized immune-regulatory role during autoimmune neuroinflammation. Mice deficient in Ifit2 displayed greater susceptibility to experimental autoimmune encephalomyelitis and escalated immune cell infiltration in the CNS. Ifit2 deficiency was also associated with microglial activation and increased myeloid cell infiltration. We also observed that myelin debris clearance and the subsequent remyelination were substantially impaired in Ifit2-/- CNS tissues. Clearing myelin debris is an important function of the reparative-type myeloid cell subset to promote remyelination. Indeed, we observed that bone marrow-derived macrophages, CNS-infiltrating myeloid cells, and microglia from Ifit2-/- mice express cytokine and metabolic genes associated with proinflammatory-type myeloid cell subsets. Taken together, our findings uncover a novel regulatory function of Ifit2 in autoimmune inflammation in part by modulating myeloid cell function and metabolic activity.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Inflamação , Camundongos Endogâmicos C57BL , Microglia , Células Mieloides , Repetições de Tetratricopeptídeos , Interferons/farmacologia
5.
Elife ; 112022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072627

RESUMO

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Assuntos
Colina/análogos & derivados , Ritmo Circadiano/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Animais , Colina/administração & dosagem , Colina/metabolismo , Dieta Hiperlipídica , Inibidores Enzimáticos/farmacologia , Leptina/deficiência , Liases/efeitos dos fármacos , Masculino , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/microbiologia
6.
Brain Disord ; 4: 100021, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34514445

RESUMO

Coronaviruses have emerged as alarming pathogens owing to their inherent ability of genetic variation and cross-species transmission. Coronavirus infection burdens the endoplasmic reticulum (ER.), causes reactive oxygen species production and induces host stress responses, including unfolded protein response (UPR) and antioxidant system. In this study, we have employed a neurotropic murine ß-coronavirus (M-CoV) infection in the Central Nervous System (CNS) of experimental mice model to study the role of host stress responses mediated by interplay of DJ-1 and XBP1. DJ-1 is an antioxidant molecule with established functions in neurodegeneration. However, its regulation in virus-induced cellular stress response is less explored. Our study showed that M-CoV infection activated the glial cells and induced antioxidant and UPR genes during the acute stage when the viral titer peaks. As the virus particles decreased and acute neuroinflammation diminished at day ten p.i., a significant up-regulation in UPR responsive XBP1, antioxidant DJ-1, and downstream signaling molecules, including Nrf2, was recorded in the brain tissues. Additionally, preliminary in silico analysis of the binding between the DJ-1 promoter and a positively charged groove of XBP1 is also investigated, thus hinting at a mechanism behind the upregulation of DJ-1 during MHV-infection. The current study thus attempts to elucidate a novel interplay between the antioxidant system and UPR in the outcome of coronavirus infection.

7.
J Biol Chem ; 297(4): 101184, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509474

RESUMO

The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Endopeptidases/metabolismo , Fase S , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA , Replicação do DNA , Endopeptidases/genética , Estabilidade Enzimática , Instabilidade Genômica , Células HCT116 , Células HeLa , Histonas , Humanos , Células MCF-7 , Ubiquitinação
8.
PLoS Pathog ; 16(11): e1009034, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253295

RESUMO

The interferon-induced tetratricopeptide repeat protein (Ifit2) protects mice from lethal neurotropic viruses. Neurotropic coronavirus MHV-RSA59 infection of Ifit2-/- mice caused pronounced morbidity and mortality accompanied by rampant virus replication and spread throughout the brain. In spite of the higher virus load, induction of many cytokines and chemokines in the brains of infected Ifit2-/- mice were similar to that in wild-type mice. In contrast, infected Ifit2-/- mice revealed significantly impaired microglial activation as well as reduced recruitment of NK1.1 T cells and CD4 T cells to the brain, possibly contributing to the lack of viral clearance. These two deficiencies were associated with a lower level of microglial expression of CX3CR1, the receptor of the CX3CL1 (Fractalkine) chemokine, which plays a critical role in both microglial activation and leukocyte recruitment. The above results uncovered a new potential role of an interferon-induced protein in immune protection.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Movimento Celular/imunologia , Infecções por Coronavirus/virologia , Leucócitos/virologia , Vírus da Hepatite Murina/patogenicidade , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/imunologia , Animais , Proteínas Reguladoras de Apoptose/deficiência , Infecções por Coronavirus/imunologia , Citocinas/metabolismo , Interferons/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Vírus da Hepatite Murina/metabolismo
9.
iScience ; 23(6): 101237, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32629605

RESUMO

Metastasis is the leading cause of death for patients with cancer. Consequently it is imperative that we improve our understanding of the molecular mechanisms that underlie progression of tumor growth toward malignancy. Advances in genome characterization technologies have been very successful in identifying commonly mutated or misregulated genes in a variety of human cancers. However, the difficulty in evaluating whether these candidates drive tumor progression remains a major challenge. Using the genetic amenability of Drosophila melanogaster we generated tumors with specific genotypes in the living animal and carried out a detailed systematic loss-of-function analysis to identify conserved genes that enhance or suppress epithelial tumor progression. This enabled the discovery of functional cooperative regulators of invasion and the establishment of a network of conserved invasion suppressors. This includes constituents of the cohesin complex, whose loss of function either promotes individual or collective cell invasion, depending on the severity of effect on cohesin complex function.

11.
Arterioscler Thromb Vasc Biol ; 38(1): 218-231, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074585

RESUMO

OBJECTIVE: Human genetic variants near the FADS (fatty acid desaturase) gene cluster (FADS1-2-3) are strongly associated with cardiometabolic traits including dyslipidemia, fatty liver, type 2 diabetes mellitus, and coronary artery disease. However, mechanisms underlying these genetic associations are unclear. APPROACH AND RESULTS: Here, we specifically investigated the physiological role of the Δ-5 desaturase FADS1 in regulating diet-induced cardiometabolic phenotypes by treating hyperlipidemic LDLR (low-density lipoprotein receptor)-null mice with antisense oligonucleotides targeting the selective knockdown of Fads1. Fads1 knockdown resulted in striking reorganization of both ω-6 and ω-3 polyunsaturated fatty acid levels and their associated proinflammatory and proresolving lipid mediators in a highly diet-specific manner. Loss of Fads1 activity promoted hepatic inflammation and atherosclerosis, yet was associated with suppression of hepatic lipogenesis. Fads1 knockdown in isolated macrophages promoted classic M1 activation, whereas suppressing alternative M2 activation programs, and also altered systemic and tissue inflammatory responses in vivo. Finally, the ability of Fads1 to reciprocally regulate lipogenesis and inflammation may rely in part on its role as an effector of liver X receptor signaling. CONCLUSIONS: These results position Fads1 as an underappreciated regulator of inflammation initiation and resolution, and suggest that endogenously synthesized arachidonic acid and eicosapentaenoic acid are key determinates of inflammatory disease progression and liver X receptor signaling.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Dislipidemias/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/enzimologia , Lipogênese , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Ácido Araquidônico/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Dessaturase de Ácido Graxo Delta-5 , Modelos Animais de Doenças , Dislipidemias/genética , Dislipidemias/patologia , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Dessaturases/genética , Inflamação/genética , Inflamação/patologia , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Ativação de Macrófagos , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética
13.
Cell Rep ; 19(12): 2451-2461, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636934

RESUMO

Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.


Assuntos
Metilaminas/sangue , Obesidade/enzimologia , Oxigenases/fisiologia , Gordura Subcutânea/enzimologia , Adipócitos Bege/enzimologia , Animais , Diabetes Mellitus Tipo 2/sangue , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/patologia , Gordura Subcutânea/patologia , Gordura Subcutânea/fisiopatologia
14.
Cell Rep ; 16(4): 939-949, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27396333

RESUMO

Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipase/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Adipócitos/metabolismo , Animais , Diglicerídeos/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Knockout
15.
Sci Transl Med ; 7(304): 304ra143, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26355032

RESUMO

The proliferative and invasive nature of malignant cancers drives lethality. In glioblastoma, these two processes are presumed mutually exclusive and hence termed "go or grow." We identified a molecular target that shuttles between these disparate cellular processes-the molecular motor KIF11. Inhibition of KIF11 with a highly specific small-molecule inhibitor stopped the growth of the more treatment-resistant glioblastoma tumor-initiating cells (TICs, or cancer stem cells) as well as non-TICs and impeded tumor initiation and self-renewal of the TIC population. Targeting KIF11 also hit the other arm of the "go or grow" cell fate decision by reducing glioma cell invasion. Administration of a KIF11 inhibitor to mice bearing orthotopic glioblastoma prolonged their survival. In its role as a shared molecular regulator of cell growth and motility across intratumoral heterogeneity, KIF11 is a compelling therapeutic target for glioblastoma.


Assuntos
Neoplasias Encefálicas/patologia , Autorrenovação Celular , Glioblastoma/patologia , Cinesinas/metabolismo , Mitose , Animais , Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Glioblastoma/metabolismo , Humanos , Cinesinas/antagonistas & inibidores , Microtúbulos/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Polimerização , Prognóstico , Análise de Sobrevida , Regulação para Cima
16.
Cell Rep ; 10(3): 326-338, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600868

RESUMO

Circulating levels of the gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) have recently been linked to cardiovascular disease (CVD) risk. Here, we performed transcriptional profiling in mouse models of altered reverse cholesterol transport (RCT) and serendipitously identified the TMAO-generating enzyme flavin monooxygenase 3 (FMO3) as a powerful modifier of cholesterol metabolism and RCT. Knockdown of FMO3 in cholesterol-fed mice alters biliary lipid secretion, blunts intestinal cholesterol absorption, and limits the production of hepatic oxysterols and cholesteryl esters. Furthermore, FMO3 knockdown stimulates basal and liver X receptor (LXR)-stimulated macrophage RCT, thereby improving cholesterol balance. Conversely, FMO3 knockdown exacerbates hepatic endoplasmic reticulum (ER) stress and inflammation in part by decreasing hepatic oxysterol levels and subsequent LXR activation. FMO3 is thus identified as a central integrator of hepatic cholesterol and triacylglycerol metabolism, inflammation, and ER stress. These studies suggest that the gut microbiota-driven TMA/FMO3/TMAO pathway is a key regulator of lipid metabolism and inflammation.

17.
J Biol Chem ; 289(16): 11367-11373, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24596092

RESUMO

The spindle assembly checkpoint (SAC) ensures the faithful segregation of the genome during mitosis by ensuring that sister chromosomes form bipolar attachments with microtubules of the mitotic spindle. p31(Comet) is an antagonist of the SAC effector Mad2 and promotes silencing of the SAC and mitotic progression. However, p31(Comet) interacts with Mad2 throughout the cell cycle. We show that p31(Comet) binds Mad2 solely in an inhibitory manner. We demonstrate that attenuating the affinity of p31(Comet) for Mad2 by phosphorylation promotes SAC activity in mitosis. Specifically, phosphorylation of Ser-102 weakens p31(Comet)-Mad2 binding and enhances p31(Comet)-mediated bypass of the SAC. Our results provide the first evidence for regulation of p31(Comet) and demonstrate a previously unknown event controlling SAC activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Mad2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteínas Mad2/genética , Proteínas Nucleares/genética , Fosforilação/fisiologia , Ligação Proteica/fisiologia
18.
Cell Cycle ; 12(24): 3824-32, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24131926

RESUMO

p31(Comet) is a well-known interacting partner of the spindle assembly checkpoint (SAC) effector molecule Mad2. At the molecular level it is well established that p31(Comet) promotes efficient mitotic exit, specifically the metaphase-anaphase transition, by antagonizing Mad2 function. However, there is little knowledge of how p31(Comet) is regulated or the physiological importance of controlling p31(Comet). Here, we show that the Rb-E2F pathway regulates p31(Comet) expression. In multiple tumor types (including breast and lung) p31(Comet) expression is increased along with Mad2. Expression of this antagonist-target pair is coordinated in cells and correlated in cancer. Moreover, a narrow range of p31(Comet):Mad2 ratios is compatible with cellular viability. Our data suggest that coordinate regulation is important for the outgrowth of oncogenic cell populations. Our findings suggest that altered p31(Comet):Mad2 expression ratios may provide new insight into altered SAC function and the generation of chromosomal instability in tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas Mad2/genética , Camundongos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fuso Acromático/metabolismo
19.
J Biol Chem ; 287(46): 39021-9, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23027877

RESUMO

Ubiquitin-mediated proteolysis is a key regulatory process in cell cycle progression. The Skp1-Cul1-F-box (SCF) and anaphase-promoting complex (APC) ubiquitin ligases target numerous components of the cell cycle machinery for destruction. Throughout the cell cycle, these ligases cooperate to maintain precise levels of key regulatory proteins, and indirectly, each other. Recently, we have identified the deubiquitinase USP37 as a regulator of the cell cycle. USP37 expression is cell cycle-regulated, being expressed in late G(1) and ubiquitinated by APC(Cdh1) in early G(1). Here we report that in addition to destruction at G(1), a major fraction of USP37 is degraded at the G(2)/M transition, prior to APC substrates and similar to SCF(ßTrCP) substrates. Consistent with this hypothesis, USP37 interacts with components of the SCF in a ßTrCP-dependent manner. Interaction with ßTrCP and subsequent degradation is phosphorylation-dependent and is mediated by the Polo-like kinase (Plk1). USP37 is stabilized in G(2) by depletion of ßTrCP as well as chemical or genetic manipulation of Plk1. Similarly, mutation of the phospho-sites abolishes ßTrCP binding and renders USP37 resistant to Plk1 activity. Expression of this mutant hinders the G(2)/M transition. Our data demonstrate that tight regulation of USP37 levels is required for proper cell cycle progression.


Assuntos
Proteínas Culina/metabolismo , Endopeptidases/química , Regulação Enzimológica da Expressão Gênica , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Fase G2 , Células HEK293 , Células HeLa , Humanos , Mitose , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitina/química , Quinase 1 Polo-Like
20.
Ann Otol Rhinol Laryngol ; 119(4): 270-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20433028

RESUMO

OBJECTIVES: We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. METHODS: Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. RESULTS: Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. CONCLUSIONS: Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.


Assuntos
DNA Complementar/análise , Orelha Média/química , Infecções por Haemophilus/genética , Haemophilus influenzae , Mucosa/química , Animais , Chinchila , Biblioteca Gênica , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...