Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurosci ; 43(18): 3259-3283, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37019622

RESUMO

Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Masculino , Feminino , Convulsões/induzido quimicamente , Encéfalo , Neurônios/fisiologia , Modelos Neurológicos
2.
Dis Model Mech ; 12(11)2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31582559

RESUMO

Epilepsy is a common primary neurological disorder characterized by the chronic tendency of a patient to experience epileptic seizures, which are abnormal body movements or cognitive states that result from excessive, hypersynchronous brain activity. Epilepsy has been found to have numerous etiologies and, although about two-thirds of epilepsies were classically considered idiopathic, the majority of those are now believed to be of genetic origin. Mutations in genes involved in gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission have been associated with a broad range of epilepsy syndromes. Mutations in the GABA-A receptor gamma 2 subunit gene (GABRG2), for example, have been associated with absence epilepsy and febrile seizures in humans. Several rodent models of GABRG2 loss of function depict clinical features of the disease; however, alternative genetic models more amenable for the study of ictogenesis and for high-throughput screening purposes are still needed. In this context, we generated a gabrg2 knockout (KO) zebrafish model (which we called R23X) that displayed light/dark-induced reflex seizures. Through high-resolution in vivo calcium imaging of the brain, we showed that this phenotype is associated with widespread increases in neuronal activity that can be effectively alleviated by the anti-epileptic drug valproic acid. Moreover, these seizures only occur at the larval stages but disappear after 1 week of age. Interestingly, our whole-transcriptome analysis showed that gabrg2 KO does not alter the expression of genes in the larval brain. As a result, the gabrg2-/- zebrafish is a novel in vivo genetic model of early epilepsies that opens new doors to investigate ictogenesis and for further drug-screening assays.


Assuntos
Modelos Animais de Doenças , Receptores de GABA-A/fisiologia , Convulsões/etiologia , Animais , Técnicas de Inativação de Genes , Larva , Luz , Subunidades Proteicas/fisiologia , Receptores de GABA-A/deficiência , Reflexo/fisiologia , Transcriptoma , Ácido Valproico/uso terapêutico , Peixe-Zebra
3.
Front Cell Neurosci ; 13: 556, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920556

RESUMO

The genetic diagnosis of patients with seizure disorders has been improved significantly by the development of affordable next-generation sequencing technologies. Indeed, in the last 20 years, dozens of causative genes and thousands of associated variants have been described and, for many patients, are now considered responsible for their disease. However, the functional consequences of these mutations are often not studied in vivo, despite such studies being central to understanding pathogenic mechanisms and identifying novel therapeutic avenues. One main roadblock to functionally characterizing pathogenic mutations is generating and characterizing in vivo mammalian models carrying clinically relevant variants in specific genes identified in patients. Although the emergence of new mutagenesis techniques facilitates the production of rodent mutants, the fact that early development occurs internally hampers the investigation of gene function during neurodevelopment. In this context, functional genomics studies using simple animal models such as flies or fish are advantageous since they open a dynamic window of investigation throughout embryonic development. In this review, we will summarize how the use of simple animal models can fill the gap between genetic diagnosis and functional and phenotypic correlates of gene function in vivo. In particular, we will discuss how these simple animals offer the possibility to study gene function at multiple scales, from molecular function (i.e., ion channel activity), to cellular circuit and brain network dynamics. As a result, simple model systems offer alternative avenues of investigation to model aspects of the disease phenotype not currently possible in rodents, which can help to unravel the pathogenic substratum in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...