Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 8(12): 5541-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19845401

RESUMO

Diabetic retinopathy is the most common microvascular complication caused by diabetes mellitus and is a leading cause of vision loss among working-age adults in developed countries. Understanding the effects of diabetes on the retinal proteome may provide insights into factors and mechanisms responsible for this disease. We have performed a comprehensive proteomic analysis and comparison of retina from C57BL/6 mice with 2 months of streptozotocin-induced diabetes and age-matched nondiabetic control mice. To explore the role of the angiotensin AT1 receptor in the retinal proteome in diabetes, a subgroup of mice were treated with the AT1 antagonist candesartan. We identified 1792 proteins from retinal lysates, of which 65 proteins were differentially changed more than 2-fold in diabetic mice compared with nondiabetic mice. A majority (72%) of these protein changes were normalized by candesartan treatment. Most of the significantly changed proteins were associated with metabolism, oxidative phosphorylation, and apoptotic pathways. An analysis of the proteomics data revealed metabolic and apoptotic abnormalities in the retina from diabetic mice that were ameliorated with candesartan treatment. These results provide insight into the effects of diabetes on the retina and the role of the AT1 receptor in modulating this response.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Retinopatia Diabética/metabolismo , Proteínas do Olho/análise , Proteoma/efeitos dos fármacos , Retina/química , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Apoptose , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Compostos de Bifenilo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/tratamento farmacológico , Proteínas do Olho/metabolismo , Metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Proteômica , Estreptozocina , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
2.
Invest Ophthalmol Vis Sci ; 47(6): 2701-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16723489

RESUMO

PURPOSE: Although vascular endothelial growth factor (VEGF) is a key mediator of retinal vascular permeability (RVP), there may be additional humoral contributors. Hepatocyte growth factor (HGF) induces endothelial cell separation, regulates expression of cell adhesion molecules and is increased in the vitreous fluid of patients with proliferative diabetic retinopathy. The purpose of this study was to evaluate the in vivo effects of HGF on RVP and retinal hemodynamics and delineate the signaling pathways. METHODS: RVP was assessed by vitreous fluorescein fluorophotometry in rats. Time course and dose-response were determined after intravitreal HGF injection. MAP kinase (MAPK), phosphatidylinositol 3-kinase (PI-3 kinase), and protein kinase C (PKC) involvement were examined by using selective inhibitors. Retinal blood flow (RBF) and mean circulation time (MCT) were evaluated by video fluorescein angiography. RESULTS: HGF increased RVP in a time- and dose-dependent manner. HGF-induced RVP was evident 5 minutes after injection, and reached maximal levels after 25 minutes (+107% versus vehicle, P=0.002). This effect was comparable to that of maximum VEGF stimulation (134%+/-128% at 25 ng/mL). Selective inhibitors of MAPK (PD98059) and PI-3 kinase (LY294002) suppressed HGF-induced RVP by 86%+/-44% (P=0.015) and 97%+/-59% (P=0.021), respectively. Non-isoform-selective inhibition of PKC did not significantly decrease HGF-induced RVP. Although VEGF increases RBF and reduces MCT, HGF did not affect either. CONCLUSIONS: HGF increases RVP in a time- and dose-dependent manner at physiologically relevant concentrations with a magnitude and profile similar to that of VEGF, without affecting retinal hemodynamics. Thus, HGF may represent another clinically significant contributor to retinal edema distinct from the actions of VEGF.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Vasos Retinianos/fisiologia , Animais , Circulação Sanguínea , Western Blotting , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Angiofluoresceinografia , Fluorofotometria , Hemodinâmica/fisiologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Vasos Retinianos/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA