Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 145: 111595, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32702509

RESUMO

Nrf2 is a transcription factor that regulates cytoprotective cellular responses to oxidative and electrophilic stress. Nrf2 is potently activated by the synthetic food additive, tert-butylhydroquinone (tBHQ), which is widely used as a preservative in oils and processed foods. Previously published studies have established that tBHQ has numerous effects on T cell function. The purpose of this study was to determine the effect of tBHQ on B cell function and the role of Nrf2 in these effects. Specifically, we investigated T cell-independent B cell activation, differentiation, and IgM antibody production. Murine wild-type and Nrf2-null splenocytes were isolated, treated with tBHQ (0.25-2.5 µm), and activated by lipopolysaccharide (LPS), a T cell-independent B cell activator. Our findings indicate that tBHQ significantly enhanced IgM production in activated wild-type, but not Nrf2-null, B cells, suggesting this effect is Nrf2-dependent. In contrast, tBHQ significantly decreased the induction of CD69, CD25, CD22, and CD138 in both wild-type and Nrf2-null splenocytes. These findings indicate that the tBHQ-mediated increase in IgM is Nrf2-dependent, whereas the inhibition of CD69, CD25, CD22 and CD138 is Nrf2-independent. Overall, this study demonstrates that in addition to its effects on T cells, tBHQ also has potent effects on T cell-independent B cell function.


Assuntos
Linfócitos B/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Hidroquinonas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antígenos CD/metabolismo , Feminino , Imunoglobulina M/metabolismo , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL
2.
Toxicol Res (Camb) ; 8(2): 227-237, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30997022

RESUMO

Cadmium is a toxic metal and common environmental contaminant. Chronic cadmium exposure results in kidney, bone, reproductive, and immune toxicity as well as cancer. Cadmium induces splenomegaly and affects the adaptive immune system, but specific effects vary depending on the dose, model, and endpoint. This study investigates the effects of subchronic, oral, and low-dose cadmium exposure (32 ppm cadmium chloride in drinking water for 10 weeks) on the rat immune system, focusing on T cell function. Cadmium-exposed animals demonstrated slight increases in the spleen-to-body weight ratios, and decreases in overall splenic cell numbers and markers of oxidative stress. The relative ratios of splenic cell populations remained similar, except for modest increases in regulatory T cells in the cadmium-exposed animals. Cadmium exposure also significantly increased the production of IFNγ, a pro-inflammatory cytokine, and IL-10, a cytokine produced by multiple T cell subsets that typically inhibits IFNγ expression, by activated T cells. The increase in IFNγ and IL-10 suggests that cadmium exposure may affect multiple T cell subsets. Collectively, this study suggests that subchronic, low-dose cadmium exposure impacts both immune cell function and cellularity, and may enhance inflammatory responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA