Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Synth Biol ; 5(12): 1505-1518, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27442619

RESUMO

The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.


Assuntos
Benzilisoquinolinas/metabolismo , Alcaloides de Berberina , Enzimas/metabolismo , Biblioteca Gênica , Saccharomyces cerevisiae/metabolismo , Benzofenantridinas/metabolismo , Alcaloides de Berberina/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , DNA/biossíntese , Enzimas/genética , Isoquinolinas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Saccharomyces cerevisiae/genética , Tetra-Hidropapaverolina/metabolismo , Transcriptoma
2.
Can J Microbiol ; 58(12): 1378-88, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23210995

RESUMO

Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the ability to directly convert cellulosic biomass into useful products such as ethanol and hydrogen. In this study, a quantitative comparative proteomic analysis of the organism was performed to identify proteins and biochemical pathways that are differentially utilized by the organism after growth on cellobiose or cellulose. The cytoplasmic and membrane proteomes of C. thermocellum grown on cellulose or cellobiose were quantitatively compared using a metabolic (15)N isotope labelling method in conjunction with nanoLC-ESI-MS/MS (liquid chromatography - electrospray ionization - tandem mass spectrometry). In total, 1255 proteins were identified in the study, and 129 of those were able to have their relative abundance per cell compared in at least one cellular compartment in response to the substrate provided. This study reveals that cells grown on cellulose increase their abundance of phosphoenolpyruvate carboxykinase while decreasing the abundance of pyruvate dikinase and oxaloacetate decarboxylase, suggesting that the organism diverts carbon flow into a transhydrogenase-malate pathway that can increase the production of the biosynthetic intermediates NADPH and GTP. Glutamate dehydrogenase was also found to have increased abundance in cellulose-grown cells, suggesting that the assimilation of ammonia is upregulated in cells grown on the cellulosic substrates. The results illustrate a mechanism by which C. thermocellum can divert carbon into alternative pathways for the purpose of producing biosynthetic intermediates necessary to respond to growth on cellulose, including transhydrogenation of NADH to NADPH and increased nitrogen assimilation.


Assuntos
Clostridium thermocellum/metabolismo , Malatos/metabolismo , NADP Trans-Hidrogenases/metabolismo , Nitrogênio/metabolismo , Proteoma/análise , Proteínas de Bactérias/análise , Biomassa , Carbono/metabolismo , Celobiose/metabolismo , Celulose/metabolismo , Cromatografia Líquida , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Regulação para Cima
3.
Antimicrob Agents Chemother ; 50(5): 1835-40, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16641457

RESUMO

The colonization of uropathogenic bacteria on urinary catheters resulting in biofilm formation frequently leads to the infection of surrounding tissue and often requires removal of the catheter. Infections associated with biofilms are difficult to treat since they may be more than 1,000 times more resistant to antibiotics than their planktonic counterparts. We have developed an antibiofilm composition comprising an N-acetyl-D-glucosamine-1-phosphate acetyltransferase (GlmU) inhibitor and protamine sulfate, a cationic polypeptide. The antibiofilm activity of GlmU inhibitors, such as iodoacetamide (IDA), N-ethyl maleimide (NEM), and NEM analogs, including N-phenyl maleimide, N,N'-(1,2-phenylene)dimaleimide (oPDM), and N-(1-pyrenyl)maleimide (PyrM), was tested against that of catheter-associated uropathogens. Both IDA and NEM inhibited biofilm formation in Escherichia coli. All NEM analogs showed antibiofilm activity against clinical isolates of E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus epidermidis, and Enterococcus faecalis. The combination of oPDM with protamine sulfate (PS) enhanced its antibiofilm activity and reduced its effective concentration to as low as 12.5 microM. In addition, we found that the in vitro inhibitory activity of oPDM-plus-PS-coated silicone catheters against P. aeruginosa and S. epidermidis colonization was superior to that of catheters coated with silver hydrogel. Confocal scanning laser microscopy further confirmed that the oPDM-plus-PS-coated silicone catheters were almost free from bacterial colonization. Thus, a broad-spectrum antibiofilm composition comprising a GlmU inhibitor and protamine sulfate shows promise for use in anti-infective coatings for medical devices, including urinary catheters.


Assuntos
Biofilmes , Cateteres de Demora/microbiologia , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções Urinárias/tratamento farmacológico , Acetiltransferases/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Protaminas/farmacologia , Cateterismo Urinário/efeitos adversos , Infecções Urinárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA