Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 295(38): 13277-13286, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723862

RESUMO

The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.


Assuntos
Córtex Cerebral/química , Canais de Potássio Éter-A-Go-Go/química , Heme/química , Neurônios/química , Córtex Cerebral/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Heme/metabolismo , Humanos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos
3.
Insect Biochem Mol Biol ; 122: 103388, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376273

RESUMO

Voltage-gated sodium channels (VGSCs) are a major target site for the action of pyrethroid insecticides and resistance to pyrethroids has been ascribed to mutations in the VGSC gene. VGSCs in insects are encoded by only one gene and their structural and functional diversity results from posttranscriptional modification, particularly, alternative splicing. Using whole cell patch clamping of neurons from pyrethroid susceptible (wild-type) and resistant strains (s-kdr) of housefly, Musca domestica, we have shown that the V50 for activation and steady state inactivation of sodium currents (INa+) is significantly depolarised in s-kdr neurons compared with wild-type and that 10 nM deltamethrin significantly hyperpolarised both of these parameters in the neurons from susceptible but not s-kdr houseflies. Similarly, tail currents were more sensitive to deltamethrin in wild-type neurons (EC15 14.5 nM) than s-kdr (EC15 133 nM). We also found that in both strains, INa+ are of two types: a strongly inactivating (to 6.8% of peak) current, and a more persistent (to 17.1% of peak) current. Analysis of tail currents showed that the persistent current in both strains (wild-type EC15 5.84 nM) was more sensitive to deltamethrin than was the inactivating type (wild-type EC15 35.1 nM). It has been shown previously, that the presence of exon l in the Drosophila melanogaster VGSC gives rise to a more persistent INa+ than does the alternative splice variant containing exon k and we used PCR with housefly head cDNA to confirm the presence of the housefly orthologues of splice variants k and l. Their effect on deltamethrin sensitivity was determined by examining INa+ in Xenopus oocytes expressing either the k or l variants of the Drosophila para VGSC. Analysis of tail currents, in the presence of various concentrations of deltamethrin, showed that the l splice variant was significantly more sensitive (EC50 42 nM) than the k splice variant (EC50 866 nM). We conclude that in addition to the presence of point mutations, target site resistance to pyrethroids may involve the differential expression of splice variants.


Assuntos
Processamento Alternativo , Drosophila melanogaster/fisiologia , Moscas Domésticas/fisiologia , Resistência a Inseticidas/genética , Mutação , Nitrilas/farmacologia , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Animais , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Moscas Domésticas/genética , Inseticidas/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Nat Commun ; 9(1): 3354, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120224

RESUMO

The originally published version of this article contained an error in the subheading 'Heme is required for CO-dependent channel activation', which was incorrectly given as 'Hame is required for CO-dependent channel activation'. This has now been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 9(1): 907, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500353

RESUMO

Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation. Here, we examine the interaction of CO with KATP channels. We find that CO activates KATP channels and that heme binding to a CXXHX16H motif on the SUR2A receptor is required for the CO-dependent increase in channel activity. Spectroscopic and kinetic data were used to quantify the interaction of CO with the ferrous heme-SUR2A complex. The results are significant because they directly connect CO-dependent regulation to a heme-binding event on the channel. We use this information to present molecular-level insight into the dynamic processes that control the interactions of CO with a heme-regulated channel protein, and we present a structural framework for understanding the complex interplay between heme and CO in ion channel regulation.


Assuntos
Monóxido de Carbono/metabolismo , Canais Iônicos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HEK293 , Heme/metabolismo , Humanos , Ativação do Canal Iônico , Canais KATP/metabolismo , Modelos Moleculares , Análise Espectral Raman , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(14): 3785-90, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27006498

RESUMO

Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.


Assuntos
Heme/metabolismo , Canais KATP/metabolismo , Receptores de Sulfonilureias/química , Motivos de Aminoácidos/genética , Animais , Linhagem Celular , Células HEK293 , Humanos , Canais KATP/genética , Miocárdio/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Receptores de Sulfonilureias/genética
7.
FEBS Lett ; 589(5): 598-607, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25637326

RESUMO

We describe the identification in aphids of a unique heterodimeric voltage-gated sodium channel which has an atypical ion selectivity filter and, unusually for insect channels, is highly insensitive to tetrodotoxin. We demonstrate that this channel has most likely arisen by adaptation (gene fission or duplication) of an invertebrate ancestral mono(hetero)meric channel. This is the only identifiable voltage-gated sodium channel homologue in the aphid genome(s), and the channel's novel selectivity filter motif (DENS instead of the usual DEKA found in other eukaryotes) may result in a loss of sodium selectivity, as indicated experimentally in mutagenised Drosophila channels.


Assuntos
Afídeos/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Evolução Molecular , Tetrodotoxina/metabolismo
8.
Insect Biochem Mol Biol ; 41(9): 723-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21640822

RESUMO

Knockdown resistance (kdr) in insects, caused by inherited nucleotide polymorphisms in the voltage-gated sodium channel (VGSC) gene, is a major threat to the efficacy of pyrethroid insecticides. Classic kdr, resulting from an L1014F substitution in the VGSC is now present in numerous pest species. Two other substitutions at the L1014 locus have also been reported, L1014S and L1014H. Here we have used expression of L1014 modified Drosophila para VGSCs in Xenopus oocytes with two-electrode voltage clamp to characterise all three mutations. The mutations L1014F and L1014H caused significant depolarizing shifts in the half activation voltage (V(50,act)) from -17.3 mV (wild-type) to -13.1 and -13.5 mV respectively, whereas L1014S caused no shift in V(50,act) but its currents decayed significantly faster than wild-type channels. Treatment of the wild-type channel with deltamethrin (≥ 1 nM), permethrin (≥ 30 nM) or DDT (≥ 1 µM) resulted in hyperpolarizing shifts in V(50,act). Deltamethrin, permethrin and DDT also produced "tail currents" with EC50s of 0.043, 0.40 and 65 µM and maximum modifications of 837, 325 and 7% respectively. L1014F provided a high level of resistance against all insecticides for both measured parameters. L1014H most effectively combated deltamethrin induced tail currents while L1014S strongly resisted the large DDT induced shifts in V(50,act). We conclude that L1014H and L1014S may have arisen through heavy exposure to specific pyrethroids and DDT respectively.


Assuntos
DDT/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia , Canais de Sódio/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eletrofisiologia , Feminino , Proteínas de Insetos/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas , Ativação do Canal Iônico , Mutação , Oócitos/metabolismo , Canais de Sódio/genética , Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...