Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 457: 88-102, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465413

RESUMO

The neuroscience of music has recently attracted significant attention, but the effect of music style on the activation of auditory-motor regions has not been explored. The aim of the present study is to analyze the differences in brain activity during passive listening to non-vocal excerpts of four different music genres (classical, reggaeton, electronic and folk). A functional magnetic resonance imaging (fMRI) experiment was performed. Twenty-eight participants with no musical training were included in the study. They had to passively listen to music excerpts of the above genres during fMRI acquisition. Imaging analysis was performed at the whole-brain-level and in auditory-motor regions of interest (ROIs). Furthermore, the musical competence of each participant was measured and its relationship with brain activity in the studied ROIs was analyzed. The whole brain analysis showed higher brain activity during reggaeton listening than the other music genres in auditory-related areas. The ROI-analysis showed that reggaeton led to higher activity not only in auditory related areas, but also in some motor related areas, mainly when it was compared with classical music. A positive relationship between the melodic-Music Ear Test (MET) score and brain activity during reggaeton listening was identified in some auditory and motor related areas. The findings revealed that listening to different music styles in musically inexperienced subjects elicits different brain activity in auditory and motor related areas. Reggaeton was, among the studied music genres, the one that evoked the highest activity in the auditory-motor network. These findings are discussed in connection with acoustic analyses of the musical stimuli.


Assuntos
Córtex Auditivo , Córtex Motor , Música , Estimulação Acústica , Percepção Auditiva , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
2.
Neuroimage ; 216: 116191, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525500

RESUMO

Keeping time is fundamental for our everyday existence. Various isochronous activities, such as locomotion, require us to use internal timekeeping. This phenomenon comes into play also in other human pursuits such as dance and music. When listening to music, we spontaneously perceive and predict its beat. The process of beat perception comprises both beat inference and beat maintenance, their relative importance depending on the salience of beat in the music. To study functional connectivity associated with these processes in a naturalistic situation, we used functional magnetic resonance imaging to measure brain responses of participants while they were listening to a piece of music containing strong contrasts in beat salience. Subsequently, we utilized dynamic graph analysis and psychophysiological interactions (PPI) analysis in connection with computational modelling of beat salience to investigate how functional connectivity manifests these processes. As the main effect, correlation analyses between the obtained dynamic graph measures and the beat salience measure revealed increased centrality in auditory-motor cortices, cerebellum, and extrastriate visual areas during low beat salience, whereas regions of the default mode- and central executive networks displayed high centrality during high beat salience. PPI analyses revealed partial dissociation of functional networks belonging to this pathway indicating complementary neural mechanisms crucial in beat inference and maintenance, processes pivotal for extracting and predicting temporal regularities in our environment.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Cerebelo/fisiologia , Conectoma/psicologia , Córtex Motor/fisiologia , Música/psicologia , Estimulação Acústica/métodos , Adulto , Córtex Auditivo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Conectoma/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Motor/diagnóstico por imagem , Periodicidade , Adulto Jovem
3.
J Neurosci Methods ; 303: 1-6, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596859

RESUMO

BACKGROUND: There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. RESULTS: The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. COMPARISON WITH EXISTING METHOD: Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. CONCLUSIONS: Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Neurociência Cognitiva/métodos , Música , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise de Componente Principal , Adulto Jovem
4.
Sci Rep ; 8(1): 708, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335643

RESUMO

Pattern recognition on neural activations from naturalistic music listening has been successful at predicting neural responses of listeners from musical features, and vice versa. Inter-subject differences in the decoding accuracies have arisen partly from musical training that has widely recognized structural and functional effects on the brain. We propose and evaluate a decoding approach aimed at predicting the musicianship class of an individual listener from dynamic neural processing of musical features. Whole brain functional magnetic resonance imaging (fMRI) data was acquired from musicians and nonmusicians during listening of three musical pieces from different genres. Six musical features, representing low-level (timbre) and high-level (rhythm and tonality) aspects of music perception, were computed from the acoustic signals, and classification into musicians and nonmusicians was performed on the musical feature and parcellated fMRI time series. Cross-validated classification accuracy reached 77% with nine regions, comprising frontal and temporal cortical regions, caudate nucleus, and cingulate gyrus. The processing of high-level musical features at right superior temporal gyrus was most influenced by listeners' musical training. The study demonstrates the feasibility to decode musicianship from how individual brains listen to music, attaining accuracy comparable to current results from automated clinical diagnosis of neurological and psychological disorders.


Assuntos
Percepção Auditiva , Encéfalo/fisiologia , Música/psicologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
5.
Front Hum Neurosci ; 11: 230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536514

RESUMO

Our sense of rhythm relies on orchestrated activity of several cerebral and cerebellar structures. Although functional connectivity studies have advanced our understanding of rhythm perception, this phenomenon has not been sufficiently studied as a function of musical training and beyond the General Linear Model (GLM) approach. Here, we studied pulse clarity processing during naturalistic music listening using a data-driven approach (independent component analysis; ICA). Participants' (18 musicians and 18 controls) functional magnetic resonance imaging (fMRI) responses were acquired while listening to music. A targeted region of interest (ROI) related to pulse clarity processing was defined, comprising auditory, somatomotor, basal ganglia, and cerebellar areas. The ICA decomposition was performed under different model orders, i.e., under a varying number of assumed independent sources, to avoid relying on prior model order assumptions. The components best predicted by a measure of the pulse clarity of the music, extracted computationally from the musical stimulus, were identified. Their corresponding spatial maps uncovered a network of auditory (perception) and motor (action) areas in an excitatory-inhibitory relationship at lower model orders, while mainly constrained to the auditory areas at higher model orders. Results revealed (a) a strengthened functional integration of action-perception networks associated with pulse clarity perception hidden from GLM analyses, and (b) group differences between musicians and non-musicians in pulse clarity processing, suggesting lifelong musical training as an important factor that may influence beat processing.

6.
Hum Brain Mapp ; 38(6): 2955-2970, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28349620

RESUMO

Musical expertise is visible both in the morphology and functionality of the brain. Recent research indicates that functional integration between multi-sensory, somato-motor, default-mode (DMN), and salience (SN) networks of the brain differentiates musicians from non-musicians during resting state. Here, we aimed at determining whether brain networks differentially exchange information in musicians as opposed to non-musicians during naturalistic music listening. Whole-brain graph-theory analyses were performed on participants' fMRI responses. Group-level differences revealed that musicians' primary hubs comprised cerebral and cerebellar sensorimotor regions whereas non-musicians' dominant hubs encompassed DMN-related regions. Community structure analyses of the key hubs revealed greater integration of motor and somatosensory homunculi representing the upper limbs and torso in musicians. Furthermore, musicians who started training at an earlier age exhibited greater centrality in the auditory cortex, and areas related to top-down processes, attention, emotion, somatosensory processing, and non-verbal processing of speech. We here reveal how brain networks organize themselves in a naturalistic music listening situation wherein musicians automatically engage neural networks that are action-based while non-musicians use those that are perception-based to process an incoming auditory stream. Hum Brain Mapp 38:2955-2970, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Música , Vias Neurais/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Adulto Jovem
7.
Neuropsychologia ; 89: 393-402, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27394152

RESUMO

Music is often used to regulate emotions and mood. Typically, music conveys and induces emotions even when one does not attend to them. Studies on the neural substrates of musical emotions have, however, only examined brain activity when subjects have focused on the emotional content of the music. Here we address with functional magnetic resonance imaging (fMRI) the neural processing of happy, sad, and fearful music with a paradigm in which 56 subjects were instructed to either classify the emotions (explicit condition) or pay attention to the number of instruments playing (implicit condition) in 4-s music clips. In the implicit vs. explicit condition, stimuli activated bilaterally the inferior parietal lobule, premotor cortex, caudate, and ventromedial frontal areas. The cortical dorsomedial prefrontal and occipital areas activated during explicit processing were those previously shown to be associated with the cognitive processing of music and emotion recognition and regulation. Moreover, happiness in music was associated with activity in the bilateral auditory cortex, left parahippocampal gyrus, and supplementary motor area, whereas the negative emotions of sadness and fear corresponded with activation of the left anterior cingulate and middle frontal gyrus and down-regulation of the orbitofrontal cortex. Our study demonstrates for the first time in healthy subjects the neural underpinnings of the implicit processing of brief musical emotions, particularly in frontoparietal, dorsolateral prefrontal, and striatal areas of the brain.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Encéfalo/fisiologia , Emoções/fisiologia , Música , Estimulação Acústica , Adulto , Encéfalo/diagnóstico por imagem , Medo , Feminino , Felicidade , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estimulação Luminosa , Adulto Jovem
8.
Neuroimage ; 124(Pt A): 224-231, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26364862

RESUMO

Low-level (timbral) and high-level (tonal and rhythmical) musical features during continuous listening to music, studied by functional magnetic resonance imaging (fMRI), have been shown to elicit large-scale responses in cognitive, motor, and limbic brain networks. Using a similar methodological approach and a similar group of participants, we aimed to study the replicability of previous findings. Participants' fMRI responses during continuous listening of a tango Nuevo piece were correlated voxelwise against the time series of a set of perceptually validated musical features computationally extracted from the music. The replicability of previous results and the present study was assessed by two approaches: (a) correlating the respective activation maps, and (b) computing the overlap of active voxels between datasets at variable levels of ranked significance. Activity elicited by timbral features was better replicable than activity elicited by tonal and rhythmical ones. These results indicate more reliable processing mechanisms for low-level musical features as compared to more high-level features. The processing of such high-level features is probably more sensitive to the state and traits of the listeners, as well as of their background in music.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Música , Estimulação Acústica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
9.
PLoS One ; 10(9): e0138238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26422790

RESUMO

Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception.


Assuntos
Percepção Auditiva/fisiologia , Corpo Caloso/fisiologia , Música , Córtex Sensório-Motor/fisiologia , Adulto , Corpo Caloso/diagnóstico por imagem , Feminino , Humanos , Masculino , Radiografia , Córtex Sensório-Motor/diagnóstico por imagem
10.
Cortex ; 57: 254-69, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24949579

RESUMO

We aimed at determining the functional neuroanatomy of working memory (WM) recognition of musical motifs that occurs while listening to music by adopting a non-standard procedure. Western tonal music provides naturally occurring repetition and variation of motifs. These serve as WM triggers, thus allowing us to study the phenomenon of motif tracking within real music. Adopting a modern tango as stimulus, a behavioural test helped to identify the stimulus motifs and build a time-course regressor of WM neural responses. This regressor was then correlated with the participants' (musicians') functional magnetic resonance imaging (fMRI) signal obtained during a continuous listening condition. In order to fine-tune the identification of WM processes in the brain, the variance accounted for by the sensory processing of a set of the stimulus' acoustic features was pruned from participants' neurovascular responses to music. Motivic repetitions activated prefrontal and motor cortical areas, basal ganglia, medial temporal lobe (MTL) structures, and cerebellum. The findings suggest that WM processing of motifs while listening to music emerges from the integration of neural activity distributed over cognitive, motor and limbic subsystems. The recruitment of the hippocampus stands as a novel finding in auditory WM. Effective connectivity and agglomerative hierarchical clustering analyses indicate that the hippocampal connectivity is modulated by motif repetitions, showing strong connections with WM-relevant areas (dorsolateral prefrontal cortex - dlPFC, supplementary motor area - SMA, and cerebellum), which supports the role of the hippocampus in the encoding of the musical motifs in WM, and may evidence long-term memory (LTM) formation, enabled by the use of a realistic listening condition.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Música , Estimulação Acústica/métodos , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reconhecimento Psicológico/fisiologia , Adulto Jovem
11.
J Neurosci Methods ; 223: 74-84, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333752

RESUMO

BACKGROUND: Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. NEW METHOD: For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. RESULTS: The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. COMPARISON WITH EXISTING METHOD(S): Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. CONCLUSIONS: Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Música , Análise de Componente Principal , Estimulação Acústica , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...