Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Am Heart Assoc ; 11(4): e024289, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156398

RESUMO

Background Activating variants in platelet-derived growth factor receptor beta (PDGFRB), including a variant we have previously described (p.Tyr562Cys [g.149505130T>C [GRCh37/hg19]; c.1685A>G]), are associated with development of multiorgan pathology, including aneurysm formation. To investigate the association between the allele fraction genotype and histopathologic phenotype, we performed an expanded evaluation of post-mortem normal and aneurysmal tissue specimens from the previously published index patient. Methods and Results Following death due to diffuse subarachnoid hemorrhage in a patient with mosaic expression of the above PDGFRB variant, specimens from the intracranial, coronary, radial and aortic arteries were harvested. DNA was extracted and alternate allele fractions (AAF) of PDGFRB were determined using digital droplet PCR. Radiographic and histopathologic findings, together with genotype expression of PDGFRB were then correlated in aneurysmal tissue and compared to non-aneurysmal tissue. The PDGFRB variant was identified in the vertebral artery, basilar artery, and P1 segment aneurysms (AAF: 28.7%, 16.4%, and 17.8%, respectively). It was also identified in the coronary and radial artery aneurysms (AAF: 22.3% and 20.6%, respectively). In phenotypically normal intracranial and coronary artery tissues, the PDGFRB variant was not present. The PDGFRB variant was absent from lymphocyte DNA and normal tissue, confirming it to be a non-germline somatic variant. Primary cell cultures from a radial artery aneurysm localized the PDGFRB variant to CD31-, non-endothelial cells. Conclusions Constitutive expression of PDGFRB within the arterial wall is associated with the development of human fusiform aneurysms. The role of targeted therapy with tyrosine kinase inhibitors in fusiform aneurysms with PDGFRB mutations should be further studied.


Assuntos
Aneurisma Intracraniano , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Artéria Basilar , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/patologia , Mosaicismo , Artéria Radial/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
2.
Clin Cancer Res ; 26(1): 193-205, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31615938

RESUMO

PURPOSE: Most World Health Organization (WHO) grade I meningiomas carry a favorable prognosis. Some become clinically aggressive with recurrence, invasion, and resistance to conventional therapies (grade 1.5; recurrent/progressive WHO grade I tumors requiring further treatment within 10 years). We aimed to identify biomarker signatures in grade 1.5 meningiomas where histopathology and genetic evaluation has fallen short. EXPERIMENTAL DESIGN: Mass spectrometry (MS)-based phosphoproteomics and peptide chip array kinomics were used to compare grade I and 1.5 tumors. Ingenuity Pathway Analysis (IPA) identified alterations in signaling pathways with validation by Western blot analysis. The selected biomarker was evaluated in an independent cohort of 140 samples (79/140 genotyped for meningioma mutations) by tissue microarray and correlated with clinical variables. RESULTS: The MS-based phosphoproteomics revealed differential Ser/Thr phosphorylation in 32 phosphopeptides. The kinomic profiling by peptide chip array identified 10 phosphopeptides, including a 360% increase in phosphorylation of RB1, in the 1.5 group. IPA of the combined datasets and Western blot validation revealed regulation of AKT and cell-cycle checkpoint cascades. RB1 hyperphosphorylation at the S780 site distinguished grade 1.5 meningiomas in an independent cohort of 140 samples and was associated with decreased progression/recurrence-free survival. Mutations in NF2, TRAF7, SMO, KLF4, and AKT1 E17K did not predict RB1 S780 staining or progression in grade 1.5 meningiomas. CONCLUSIONS: RB1 S780 staining distinguishes grade 1.5 meningiomas, independent of histology, subtype, WHO grade, or genotype. This promising biomarker for risk stratification of histologically bland WHO grade I meningiomas provides insight into the pathways of oncogenesis driving these outlying clinically aggressive tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Progressão da Doença , Seguimentos , Humanos , Fator 4 Semelhante a Kruppel , Espectrometria de Massas/métodos , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Gradação de Tumores , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Proteoma/análise , Proteoma/metabolismo , Fatores de Risco , Transdução de Sinais , Análise Serial de Tecidos/métodos
3.
Am J Hum Genet ; 104(5): 968-976, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031011

RESUMO

The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor ß gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors.


Assuntos
Aneurisma/genética , Aneurisma Intracraniano/genética , Mutação , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Aneurisma/patologia , Criança , Estudos de Coortes , Feminino , Humanos , Aneurisma Intracraniano/patologia , Masculino , Homologia de Sequência , Adulto Jovem
4.
Sci Rep ; 8(1): 2098, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391485

RESUMO

There is a need to better understand meningioma oncogenesis for biomarker discovery and development of targeted therapies. Histological or genetic criteria do not accurately predict aggressiveness. Post-translational studies in meningioma progression are lacking. In the present work, we introduce a combination of mass spectrometry-based phosphoproteomics and peptide array kinomics to profile atypical and anaplastic (high-grade) meningiomas. In the discovery set of fresh-frozen tissue specimens (14), the A-kinase anchor protein 12 (AKAP12) protein was found downregulated across the grades. AKAP12 knockdown in benign meningioma cells SF4433 increases proliferation, cell cycle, migration, invasion, and confers an anaplastic profile. Differentially regulated pathways were characteristic of high-grade meningiomas. Low AKAP12 expression in a larger cohort of patients (75) characterized tumor invasiveness, recurrence, and progression, indicating its potential as a prognostic biomarker. These results demonstrate AKAP12 as a central regulator of meningioma aggressiveness with a possible role in progression.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteoma/análise , Biomarcadores Tumorais/metabolismo , Carcinogênese , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Taxa de Sobrevida
5.
J Neurol Surg B Skull Base ; 78(5): 371-379, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28875114

RESUMO

Background Meningomas represent the most common primary intracranial tumor. The majority are benign World Health Organization (WHO) Grade I lesions, but a subset of these behave in an aggressive manner. Protein biomarkers are needed to distinguish aggressive from benign Grade I lesions. Materials and Methods Pooled protein lysates were derived from five clinically aggressive Grade I and five typically benign WHO Grade I tumors snap frozen at the time of surgery. Proteins were separated in each group using two-dimensional gel electrophoresis (2DGE) and protein spots of interest were identified using liquid chromatography-mass spectrometry (LC-MS). Potential biomarker candidates were validated using western blot assays in individual tumor samples and by tissue microarray (TMA). Results Seven candidate biomarkers were obtained from the 2DGE and validated via western blot and TMA. Biomarker validation data allowed for the creation of predictive models using binary logistical regression that correctly identified 85.9% of aggressive tumors within the larger cohort of Grade I meningioma. Conclusion Simple protein separation by 2DGE and identification of candidate biomarkers by LC-MS allowed for the identification of seven candidate biomarkers that when used in predictive models accurately distinguish aggressive from benign behavior in WHO Grade I meningioma.

6.
World Neurosurg ; 107: 75-81, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28647652

RESUMO

BACKGROUND: Chordomas and chondrosarcomas can occur in the skull base. Currently, 45% of chordomas and 56% of chondrosarcomas recur within 5 years of surgery. The role of adjuvant therapy is highly debated. No pharmacotherapies have been approved by the U.S. Food and Drug Administration for chordomas or chondrosarcomas. High propensity for recurrence and lack of definitive adjuvant therapy necessitate additional basic science research to identify molecular anomalies associated with recurrent disease. METHODS: We pooled tumor lysates from patients based on clinical criteria into 4 groups: primary chordomas, primary chordomas that recurred, primary chondrosarcomas, and primary chondrosarcomas that recurred. We used a peptide labeling method, isobaric tags for relative and absolute quantitation, to uniquely identify each tumor group. Phosphorylated peptides were identified and quantified via mass spectroscopy to determine and predict active kinases. RESULTS: Six groups of phosphorylated peptides were associated with primary tumors that later recurred. Specific kinases associated with primary chordomas that recurred were FES and FER. Specific kinases associated with primary chondrosarcomas that recurred were FES, FER, SRC family kinases, PKC, ROCK, and mitogen-activated protein kinase signaling (JNK, ERK1, p38). CONCLUSIONS: These data provide clinicians with a means to screen skull base chordomas and chondrosarcomas to help identify tumors with a propensity to recur. Many of these kinases can be efficaciously inhibited by Food and Drug Administration-approved drugs that have not yet been used in clinical trials for treatment of skull base chordomas or chondrosarcomas. Validation of kinases identified in this study may advance treatment options for patients with these tumors.


Assuntos
Condrossarcoma/enzimologia , Cordoma/enzimologia , Fosfotransferases/metabolismo , Neoplasias da Base do Crânio/enzimologia , Biomarcadores/metabolismo , Carcinogênese , Condrossarcoma/tratamento farmacológico , Cordoma/tratamento farmacológico , Biologia Computacional , Humanos , Fosforilação , Proteoma , Recidiva , Neoplasias da Base do Crânio/tratamento farmacológico
7.
Cancer Prev Res (Phila) ; 5(4): 655-64, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22277732

RESUMO

Longitudinal blood collections from cohort studies provide the means to search for proteins associated with disease before clinical diagnosis. We investigated plasma samples from the Women's Health Initiative (WHI) cohort to determine quantitative differences in plasma proteins between subjects subsequently diagnosed with colorectal cancer (CRC) and matched controls that remained cancer-free during the period of follow-up. Proteomic analysis of WHI samples collected before diagnosis of CRC resulted in the identification of six proteins with significantly (P < 0.05) elevated concentrations in cases compared with controls. Proteomic analysis of two CRC cell lines showed that five of the six proteins were produced by cancer cells. Microtubule-associated protein RP/EB family member 1 (MAPRE1), insulin-like growth factor-binding protein 2 (IGFBP2), leucine-rich alpha-2-glycoprotein (LRG1), and carcinoembryonic antigen (CEA) were individually assayed by enzyme linked immunosorbent assay (ELISA) in 58 pairs of newly diagnosed CRC samples and controls and yielded significant elevations (P < 0.05) among cases relative to controls. A combination of these four markers resulted in a receiver operating characteristics curve with an area under the curve value of 0.841 and 57% sensitivity at 95% specificity. This combination rule was tested in an independent set of WHI samples collected within 7 months before diagnosis from cases and matched controls resulting in 41% sensitivity at 95% specificity. A panel consisting of CEA, MAPRE1, IGFBP2, and LRG1 has predictive value in prediagnostic CRC plasmas.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Glicoproteínas/sangue , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteínas Associadas aos Microtúbulos/sangue , Proteína da Polipose Adenomatosa do Colo/metabolismo , Idoso , Antígeno Carcinoembrionário/metabolismo , Linhagem Celular Tumoral , Análise Mutacional de DNA/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Peptídeos/química , Curva ROC , Sensibilidade e Especificidade
8.
Genome Med ; 2(7): 48, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20667078

RESUMO

BACKGROUND: Coronary heart disease (CHD) and stroke were key outcomes in the Women's Health Initiative (WHI) randomized trials of postmenopausal estrogen and estrogen plus progestin therapy. We recently reported a large number of changes in blood protein concentrations in the first year following randomization in these trials using an in-depth quantitative proteomics approach. However, even though many affected proteins are in pathways relevant to the observed clinical effects, the relationships of these proteins to CHD and stroke risk among postmenopausal women remains substantially unknown. METHODS: The same in-depth proteomics platform was applied to plasma samples, obtained at enrollment in the WHI Observational Study, from 800 women who developed CHD and 800 women who developed stroke during cohort follow-up, and from 1-1 matched controls. A plasma pooling strategy, followed by extensive fractionation prior to mass spectrometry, was used to identify proteins related to disease incidence, and the overlap of these proteins with those affected by hormone therapy was examined. Replication studies, using enzyme-linked-immunosorbent assay (ELISA), were carried out in the WHI hormone therapy trial cohorts. RESULTS: Case versus control concentration differences were suggested for 37 proteins (nominal P < 0.05) for CHD, with three proteins, beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), and insulin-like growth factor binding protein acid labile subunit (IGFALS) having a false discovery rate < 0.05. Corresponding numbers for stroke were 47 proteins with nominal P < 0.05, three of which, apolipoprotein A-II precursor (APOA2), peptidyl-prolyl isomerase A (PPIA), and insulin-like growth factor binding protein 4 (IGFBP4), have a false discovery rate < 0.05. Other proteins involved in insulin-like growth factor signaling were also highly ranked. The associations of B2M with CHD (P < 0.001) and IGFBP4 with stroke (P = 0.005) were confirmed using ELISA in replication studies, and changes in these proteins following the initiation of hormone therapy use were shown to have potential to help explain hormone therapy effects on those diseases. CONCLUSIONS: In-depth proteomic discovery analysis of prediagnostic plasma samples identified B2M and IGFBP4 as risk markers for CHD and stroke respectively, and provided a number of candidate markers of disease risk and candidate mediators of hormone therapy effects on CHD and stroke. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov identifier: NCT00000611.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...