Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Invest Dermatol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692406

RESUMO

Intravenous immunoglobulin (IVIg) is used to treat mucous membrane pemphigoid (MMP), although its therapeutic effectivity is not sufficiently supported by randomized controlled clinical trials and its mode of action is only insufficiently understood. We have examined the effect of IVIg in a mouse model of anti-laminin 332 MMP and found that IVIg ameliorates both cutaneous and mucosal inflammatory lesions. Our investigation into the modes of action of IVIg in MMP indicated effective antiinflammatory mechanisms beyond the enhanced degradation of IgG mediated through inhibition of the neonatal Fc receptor. Our results suggest that IVIg curbs the activation of neutrophils at several levels. This includes a direct, immediate inhibitory effect on neutrophil activation by immune complexes but not C5a which blunts the release of reactive oxygen species and leukotriene B4 from neutrophils. IVIg also suppresses the formation of neutrophil extracellular traps in response to Ca2+ ionophore. In vivo treatment with IVIg altered the transcriptome of blood leukocytes and bone marrow neutrophils towards less proinflammatory phenotypes. Collectively, our results support the effectivity of IVIg in the treatment of MMP and indicate that effects on neutrophils at multiple levels may significantly contribute to its therapeutic effects.

3.
Leukemia ; 38(5): 1086-1098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600314

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison. DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters (IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2) differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN offers novel molecular insights and potential diagnostic applications.


Assuntos
Metilação de DNA , Células Dendríticas , Humanos , Células Dendríticas/patologia , Células Dendríticas/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Microambiente Tumoral/genética , Idoso , Adulto , Prognóstico , Regulação Neoplásica da Expressão Gênica , Mutação , Biomarcadores Tumorais/genética
4.
JMIR Res Protoc ; 13: e53627, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441925

RESUMO

BACKGROUND: Complex and expanding data sets in clinical oncology applications require flexible and interactive visualization of patient data to provide the maximum amount of information to physicians and other medical practitioners. Interdisciplinary tumor conferences in particular profit from customized tools to integrate, link, and visualize relevant data from all professions involved. OBJECTIVE: The scoping review proposed in this protocol aims to identify and present currently available data visualization tools for tumor boards and related areas. The objective of the review will be to provide not only an overview of digital tools currently used in tumor board settings, but also the data included, the respective visualization solutions, and their integration into hospital processes. METHODS: The planned scoping review process is based on the Arksey and O'Malley scoping study framework. The following electronic databases will be searched for articles published in English: PubMed, Web of Knowledge, and SCOPUS. Eligible articles will first undergo a deduplication step, followed by the screening of titles and abstracts. Second, a full-text screening will be used to reach the final decision about article selection. At least 2 reviewers will independently screen titles, abstracts, and full-text reports. Conflicting inclusion decisions will be resolved by a third reviewer. The remaining literature will be analyzed using a data extraction template proposed in this protocol. The template includes a variety of meta information as well as specific questions aiming to answer the research question: "What are the key features of data visualization solutions used in molecular and organ tumor boards, and how are these elements integrated and used within the clinical setting?" The findings will be compiled, charted, and presented as specified in the scoping study framework. Data for included tools may be supplemented with additional manual literature searches. The entire review process will be documented in alignment with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flowchart. RESULTS: The results of this scoping review will be reported per the expanded PRISMA-ScR guidelines. A preliminary search using PubMed, Web of Knowledge, and Scopus resulted in 1320 articles after deduplication that will be included in the further review process. We expect the results to be published during the second quarter of 2024. CONCLUSIONS: Visualization is a key process in leveraging a data set's potentially available information and enabling its use in an interdisciplinary setting. The scoping review described in this protocol aims to present the status quo of visualization solutions for tumor board and clinical oncology applications and their integration into hospital processes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/53627.

5.
Neurogenetics ; 25(2): 141-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498291

RESUMO

Dystonia due to pathogenic variants in the THAP1 gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since THAP1 encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the THAP1 gene, which were previously identified by transcriptome analyses. For this, we performed quantitative (qPCR) and Digital PCR (dPCR) in cultured fibroblasts. RNA was extracted from THAP1 manifesting (MMCs) and non-manifesting mutation carriers (NMCs) as well as from healthy controls. The expression profiles of ten of 14 known neuronal DEGs demonstrated differences in fibroblasts between these three groups. This included transcription factors and targets (ATF4, CLN3, EIF2A, RRM1, YY1), genes involved in G protein-coupled receptor signaling (BDKRB2, LPAR1), and a gene linked to apoptosis and DNA replication/repair (CRADD), which all showed higher expression levels in MMCs and NMCs than in controls. Moreover, the analysis of genes linked to neurological disorders (STXBP1, TOR1A) unveiled differences in expression patterns between MMCs and controls. Notably, the genes CUEDC2, DRD4, ECH1, and SIX2 were not statistically significantly differentially expressed in fibroblast cultures. With > 70% of the tested genes being DEGs also in fibroblasts, fibroblasts seem to be a suitable model for DYT-THAP1 research despite some restrictions. Furthermore, at least some of these DEGs may potentially also serve as biomarkers of DYT-THAP1 and influence its penetrance and expressivity.


Assuntos
Proteínas Reguladoras de Apoptose , Biomarcadores , Proteínas de Ligação a DNA , Fibroblastos , Fibroblastos/metabolismo , Humanos , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Apoptose/genética , Masculino , Feminino , Distonia/genética , Adulto , Mutação , Perfilação da Expressão Gênica/métodos , Pessoa de Meia-Idade , Células Cultivadas , Expressão Gênica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcriptoma
6.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398077

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is mostly diagnosed at advanced or even metastasized stages, limiting the prognoses of patients. Metastasis requires high tumor cell plasticity, implying phenotypic switching in response to changing environments. Here, epithelial-mesenchymal transition (EMT), being associated with an increase in cancer stem cell (CSC) properties, and its reversion are important. Since it is poorly understood whether different CSC phenotypes exist along the EMT axis and how these impact malignancy-associated properties, we aimed to characterize CSC populations of epithelial and mesenchymal-like PDAC cells. Single-cell cloning revealed CSC (Holoclone) and non-CSC (Paraclone) clones from the PDAC cell lines Panc1 and Panc89. The Panc1 Holoclone cells showed a mesenchymal-like phenotype, dominated by a high expression of the stemness marker Nestin, while the Panc89 Holoclone cells exhibited a SOX2-dominated epithelial phenotype. The Panc89 Holoclone cells showed enhanced cell growth and a self-renewal capacity but slow cluster-like invasion. Contrarily, the Panc1 Holoclone cells showed slower cell growth and self-renewal ability but were highly invasive. Moreover, cell variants differentially responded to chemotherapy. In vivo, the Panc1 and Panc89 cell variants significantly differed regarding the number and size of metastases, as well as organ manifestation, leading to different survival outcomes. Overall, these data support the existence of different CSC phenotypes along the EMT axis in PDAC, manifesting different metastatic propensities.

7.
Mov Disord ; 39(3): 526-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214203

RESUMO

BACKGROUND: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS: We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS: We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION: This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Mutação/genética , Frequência do Gene , Doença de Parkinson/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genética
8.
JMIR Med Inform ; 11: e50017, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079196

RESUMO

BACKGROUND: In molecular tumor boards (MTBs), patients with rare or advanced cancers are discussed by a multidisciplinary team of health care professionals. Software support for MTBs is lacking; in particular, tools for preparing and documenting MTB therapy recommendations need to be developed. OBJECTIVE: We aimed to implement an extension to cBioPortal to provide a tool for the documentation of therapy recommendations from MTB sessions in a secure and standardized manner. The developed extension should be embedded in the patient view of cBioPortal to enable easy documentation during MTB sessions. The resulting architecture for storing therapy recommendations should be integrable into various hospital information systems. METHODS: On the basis of a requirements analysis and technology analysis for authentication techniques, a prototype was developed and iteratively refined through a user-centered development process. In conclusion, the tool was evaluated via a usability evaluation, including interviews, structured questionnaires, and the System Usability Scale. RESULTS: The patient view of cBioPortal was extended with a new tab that enables users to document MTB sessions and therapy recommendations. The role-based access control was expanded to allow for a finer distinction among the rights to view, edit, and delete data. The usability evaluation showed overall good usability and a System Usability Scale score of 83.57. CONCLUSIONS: This study demonstrates how cBioPortal can be extended to not only visualize MTB patient data but also be used as a documentation platform for therapy recommendations.

9.
Sci Rep ; 13(1): 20517, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993469

RESUMO

Diabetes mellitus (DM) represents a major health problem in Egypt and worldwide, with increasing numbers of patients with prediabetes every year. Numerous factors, such as obesity, hyperlipidemia, and hypertension, which have recently become serious concerns, affect the complex pathophysiology of diabetes. These metabolic syndrome diseases are highly linked to genetic variability that drives certain populations, such as Egypt, to be more susceptible to developing DM. Here we conduct a comprehensive analysis to pinpoint the similarities and uniqueness among the Egyptian genome reference and the 1000-genome subpopulations (Europeans, Ad-Mixed Americans, South Asians, East Asians, and Africans), aiming at defining the potential genetic risk of metabolic syndromes. Selected approaches incorporated the analysis of the allele frequency of the different populations' variations, supported by genotypes' principal component analysis. Results show that the Egyptian's reference metabolic genes were clustered together with the Europeans', Ad-Mixed Americans', and South-Asians'. Additionally, 8563 variants were uniquely identified in the Egyptian cohort, from those, two were predicted to cause structural damage, namely, CDKAL1: 6_21065070 (A > T) and PPARG: 3_12351660 (C > T) utilizing the Missense3D database. The former is a protein coding gene associated with Type 2 DM while the latter is a key regulator of adipocyte differentiation and glucose homeostasis. Both variants were detected heterozygous in two different Egyptian individuals from overall 110 sample. This analysis sheds light on the unique genetic traits of the Egyptian population that play a role in the DM high prevalence in Egypt. The proposed analysis pipeline -available through GitHub- could be used to conduct similar analysis for other diseases across populations.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Egito/epidemiologia , Frequência do Gene , Fatores de Risco , Genótipo , Polimorfismo de Nucleotídeo Único
10.
Sci Rep ; 13(1): 17943, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863978

RESUMO

Type 2 Diabetes Mellitus has reached epidemic levels globally, and several studies have confirmed a link between gut microbial dysbiosis and aberrant glucose homeostasis among people with diabetes. While the assumption is that abnormal metabolomic signatures would often accompany microbial dysbiosis, the connection remains largely unknown. In this study, we investigated how diet changed the gut bacteriome, mycobiome and metabolome in people with and without type 2 Diabetes.1 Differential abundance testing determined that the metabolites Propionate, U8, and 2-Hydroxybutyrate were significantly lower, and 3-Hydroxyphenyl acetate was higher in the high fiber diet compared to low fiber diet in the healthy control group. Next, using multi-omics factor analysis (MOFA2), we attempted to uncover sources of variability that drive each of the different groups (bacterial, fungal, and metabolite) on all samples combined (control and DM II). Performing variance decomposition, ten latent factors were identified, and then each latent factor was tested for significant correlations with age, BMI, diet, and gender. Latent Factor1 was the most significantly correlated. Remarkably, the model revealed that the mycobiome explained most of the variance in the DM II group (12.5%) whereas bacteria explained most of the variance in the control group (64.2% vs. 10.4% in the DM II group). The latent Factor1 was significantly correlated with dietary intake (q < 0.01). Further analyses of the impact of bacterial and fungal genera on Factor1 determined that the nine bacterial genera (Phocaeicola, Ligilactobacillus, Mesosutterella, Acidaminococcus, Dorea A, CAG-317, Caecibacter, Prevotella and Gemmiger) and one fungal genus (Malassezia furfur) were found to have high factor weights (absolute weight > 0.6). Alternatively, a linear regression model was fitted per disease group for each genus to visualize the relationship between the factor values and feature abundances, showing Xylose with positive weights and Propionate, U8, and 2-Hydroxybutyrate with negative weights. This data provides new information on the microbially derived changes that influence metabolic phenotypes in response to different diets and disease conditions in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/genética , Disbiose/microbiologia , Propionatos , Multiômica , Metabolômica , Bactérias/genética , Ingestão de Alimentos , Hidroxibutiratos
11.
Microbiome ; 11(1): 232, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864204

RESUMO

BACKGROUND: Like its human counterpart, canine atopic dermatitis (cAD) is a chronic relapsing condition; thus, most cAD-affected dogs will require lifelong treatment to maintain an acceptable quality of life. A potential intervention is modulation of the composition of gut microbiota, and in fact, probiotic treatment has been proposed and tried in human atopic dermatitis (AD) patients. Since dogs are currently receiving intensive medical care, this will be the same option for dogs, while evidence of gut dysbiosis in cAD is still missing, although skin microbial profiling in cAD has been conducted in several studies. Therefore, we conducted a comprehensive analysis of both gut and skin microbiota in cAD in one specific cAD-predisposed breed, Shiba Inu. Additionally, we evaluated the impact of commonly used medical management on cAD (Janus kinase; JAK inhibitor, oclacitinib) on the gut and skin microbiota. Furthermore, we genotyped the Shiba Inu dogs according to the mitochondrial DNA haplogroup and assessed its association with the composition of the gut microbiota. RESULTS: Staphylococcus was the most predominant bacterial genus observed in the skin; Escherichia/Shigella and Clostridium sensu stricto were highly abundant in the gut of cAD-affected dogs. In the gut microbiota, Fusobacteria and Megamonas were highly abundant in healthy dogs but significantly reduced in cAD-affected dogs. The abundance of these bacterial taxa was positively correlated with the effect of the treatment and state of the disease. Oclacitinib treatment on cAD-affected dogs shifted the composition of microbiota towards that in healthy dogs, and the latter brought it much closer to healthy microbiota, particularly in the gut. Additionally, even within the same dog breed, the mtDNA haplogroup varied, and there was an association between the mtDNA haplogroup and microbial composition in the gut and skin. CONCLUSIONS: Dysbiosis of both the skin and the gut was observed in cAD in Shiba Inu dogs. Our findings provide a basis for the potential treatment of cAD by manipulating the gut microbiota as well as the skin microbiota. Video Abstract.


Assuntos
Dermatite Atópica , Microbiota , Cães , Humanos , Animais , Dermatite Atópica/veterinária , Dermatite Atópica/microbiologia , Disbiose , Qualidade de Vida , Bactérias , DNA Mitocondrial
12.
Blood ; 142(25): 2175-2191, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37756525

RESUMO

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Temozolomida , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Dano ao DNA , Reparo do DNA , Células Germinativas/metabolismo , DNA , Fatores de Transcrição/genética
13.
Front Oncol ; 13: 1230382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719017

RESUMO

Purpose: Chemotherapy is pivotal in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC). Technical advances unveiled a high degree of inter- and intratumoral heterogeneity. We hypothesized that intratumoral heterogeneity (ITH) impacts response to gemcitabine treatment and demands specific targeting of resistant subclones. Methods: Using single cell-derived cell lines (SCDCLs) from the classical cell line BxPC3 and the basal-like cell line Panc-1, we addressed the effect of ITH on response to gemcitabine treatment. Results: Individual SCDCLs of both parental tumor cell populations showed considerable heterogeneity in response to gemcitabine. Unsupervised PCA including the 1,000 most variably expressed genes showed a clustering of the SCDCLs according to their respective sensitivity to gemcitabine treatment for BxPC3, while this was less clear for Panc-1. In BxPC3 SCDCLs, enriched signaling pathways EMT, TNF signaling via NfKB, and IL2STAT5 signaling correlated with more resistant behavior to gemcitabine. In Panc-1 SCDCLs MYC targets V1 and V2 as well as E2F targets were associated with stronger resistance. We used recursive feature elimination for Feature Selection in order to compute sets of proteins that showed strong association with the response to gemcitabine. The optimal protein set calculated for Panc-1 comprised fewer proteins in comparison to the protein set determined for BxPC3. Based on molecular profiles, we could show that the gemcitabine-resistant SCDCLs of both BxPC3 and Panc-1 are more sensitive to the BET inhibitor JQ1 compared to the respective gemcitabine-sensitive SCDCLs. Conclusion: Our model system of SCDCLs identified gemcitabine-resistant subclones and provides evidence for the critical role of ITH for treatment response in PDAC. We exploited molecular differences as the basis for differential response and used these for more targeted therapy of resistant subclones.

14.
Front Immunol ; 14: 1189251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575223

RESUMO

Introduction: Primarily driven by autoreactive B cells, pemphigus foliaceus (PF) is an uncommon autoimmune blistering skin disease of sporadic occurrence worldwide. However, PF reaches a prevalence of 3% in the endemic areas of Brazil, the highest ever registered for any autoimmune disease, which indicates environmental factors influencing the immune response in susceptible individuals. We aimed to provide insights into the immune repertoire of patients with PF living in the endemic region of the disease, compared to healthy individuals from the endemic region and a non-endemic area. Methods: We characterized the B-cell repertoire in i) nontreated patients (n=5); ii) patients under immunosuppressive treatment (n=5); iii) patients in remission without treatment (n=6); and two control groups iv) from the endemic (n=6) and v) non-endemic areas in Brazil (n=4). We used total RNA extracted from peripheral blood mononuclear cells and performed a comprehensive characterization of the variable region of immunoglobulin heavy chain (IGH) in IgG and IgM using next-generation sequencing. Results: Compared to individuals from a different area, we observed remarkably lower clonotype diversity in the B-cell immune repertoire of patients and controls from the endemic area (p < 0.02), suggesting that the immune repertoire in the endemic area is under geographically specific and intense environmental pressure. Moreover, we observed longer CDR3 sequences in patients, and we identified differential disease-specific usage of IGHV segments, including increased IGHV3-30 and decreased IGHV3-23 in patients with active disease (p < 0.04). Finally, our robust network analysis discovered clusters of CDR3 sequences uniquely observed in patients with PF. Discussion: Our results indicate that environmental factors, in addition to disease state, impact the characteristics of the repertoire. Our findings can be applied to further investigation of the environmental factors that trigger pemphigus and expand the knowledge for identifying new targeted and more effective therapies.


Assuntos
Pênfigo , Humanos , Leucócitos Mononucleares , Vesícula , Imunoglobulinas
15.
mBio ; 14(5): e0049223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623323

RESUMO

IMPORTANCE: Long-term prescription of proton pump inhibitors (PPIs) in patients with cirrhosis is common practice. However, in recent years, several observational studies have reported increased complications and negative prognostic effects of PPI treatment in these patients. Judging the significance of these associations is complicated by the fact that a plausible underlying pathomechanism has not been identified so far. In the present study, we address this important issue by investigating the impact of PPI treatment on subclinical bacterial translocation from the gut into the blood stream in patients with advanced cirrhosis and portal hypertension. Indeed, we report significantly aggravated bacterial translocation in cirrhosis patients receiving PPI treatment. This finding is highly relevant, as bacterial translocation is known to promote the development of complications and impair prognosis in patients with cirrhosis. Hence, the present study could establish a plausible link between PPI treatment and adverse effects in cirrhosis.


Assuntos
Hipertensão Portal , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Translocação Bacteriana , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/microbiologia , Hipertensão Portal/induzido quimicamente , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Prognóstico
16.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485550

RESUMO

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , MicroRNAs , Transtornos dos Movimentos , Adolescente , Criança , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Haploinsuficiência/genética , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Tremor
17.
Cancers (Basel) ; 15(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37444566

RESUMO

(1) Background: Next-generation sequencing (NGS) of patients with advanced tumors is becoming an established method in Molecular Tumor Boards. However, somatic variant detection, interpretation, and report generation, require in-depth knowledge of both bioinformatics and oncology. (2) Methods: MIRACUM-Pipe combines many individual tools into a seamless workflow for comprehensive analyses and annotation of NGS data including quality control, alignment, variant calling, copy number variation estimation, evaluation of complex biomarkers, and RNA fusion detection. (3) Results: MIRACUM-Pipe offers an easy-to-use, one-prompt standardized solution to analyze NGS data, including quality control, variant calling, copy number estimation, annotation, visualization, and report generation. (4) Conclusions: MIRACUM-Pipe, a versatile pipeline for NGS, can be customized according to bioinformatics and clinical needs and to support clinical decision-making with visual processing and interactive reporting.

18.
Target Oncol ; 18(5): 749-765, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488307

RESUMO

BACKGROUND: There is growing evidence supporting multidisciplinary molecular tumor boards (MTB) in solid tumors whereas hematologic malignancies remain underrepresented in this regard. OBJECTIVE: The present study aimed to assess the clinical relevance of MTBs in primary refractory diffuse large B-cell lymphomas/high-grade B-cell lymphomas with MYC and BCL2 rearrangements (prDLBCL/HGBL-MYC/BCL2) (n = 13) and HGBL, not otherwise specified (NOS), with MYC and BCL6 rearrangements (prHGBL, NOS-MYC/BCL6) (n = 6) based on our previously published whole-exome sequencing (WES) cohort. PATIENTS AND METHODS: For genomic analysis, the institutional MTB WES pipeline (University Cancer Center Schleswig-Holstein: UCCSH), certified for routine clinical diagnostics, was employed and supplemented by a comprehensive immunohistochemical work-up. Consecutive database research and annotation according to established evidence levels for molecularly stratified therapies was performed (NCT-DKTK/ESCAT). RESULTS: Molecularly tailored treatment options with NCT-DKTK evidence level of at least m2A were identified in each case. We classified mutations in accordance with biomarker/treatment baskets and detected a heterogeneous spectrum of targetable alterations affecting immune evasion (IE; n = 30), B-cell targets (BCT; n = 26), DNA damage repair (DDR; n = 20), tyrosine kinases (TK; n = 13), cell cycle (CC; n = 7), PI3K-MTOR-AKT pathway (PAM; n = 2), RAF-MEK-ERK cascade (RME; n = 1), and others (OTH; n = 11). CONCLUSION: Our virtual MTB approach identified potential molecularly targeted treatment options alongside targetable genomic signatures for both prDLBCL/HGBL-MYC/BCL2 and prHGBL, NOS-MYC/BCL6. These results underline the potential of MTB consultations in difficult-to-treat lymphomas early in the treatment sequence.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfócitos B , Rearranjo Gênico
19.
Front Oncol ; 13: 1200897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384296

RESUMO

Introduction: Resistance in anti-cancer treatment is a result of clonal evolution and clonal selection. In chronic myeloid leukemia (CML), the hematopoietic neoplasm is predominantly caused by the formation of the BCR::ABL1 kinase. Evidently, treatment with tyrosine kinase inhibitors (TKIs) is tremendously successful. It has become the role model of targeted therapy. However, therapy resistance to TKIs leads to loss of molecular remission in about 25% of CML patients being partially due to BCR::ABL1 kinase mutations, while for the remaining cases, various other mechanisms are discussed. Methods: Here, we established an in vitro-TKI resistance model against the TKIs imatinib and nilotinib and performed exome sequencing. Results: In this model, acquired sequence variants in NRAS, KRAS, PTPN11, and PDGFRB were identified in TKI resistance. The well-known pathogenic NRAS p.(Gln61Lys) variant provided a strong benefit for CML cells under TKI exposure visible by increased cell number (6.2-fold, p < 0.001) and decreased apoptosis (-25%, p < 0.001), proving the functionality of our approach. The transfection of PTPN11 p.(Tyr279Cys) led to increased cell number (1.7-fold, p = 0.03) and proliferation (2.0-fold, p < 0.001) under imatinib treatment. Discussion: Our data demonstrate that our in vitro-model can be used to study the effect of specific variants on TKI resistance and to identify new driver mutations and genes playing a role in TKI resistance. The established pipeline can be used to study candidates acquired in TKI-resistant patients, thereby providing new options for the development of new therapy strategies to overcome resistance.

20.
BMC Bioinformatics ; 24(1): 182, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138207

RESUMO

Despite the availability of batch effect correcting algorithms (BECA), no comprehensive tool that combines batch correction and evaluation of the results exists for microbiome datasets. This work outlines the Microbiome Batch Effects Correction Suite development that integrates several BECAs and evaluation metrics into a software package for the statistical computation framework R.


Assuntos
Microbiota , Software , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...