Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 2095, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453914

RESUMO

Vertebrates transport hydrophobic triglycerides through the circulatory system by packaging them within amphipathic particles called Triglyceride-Rich Lipoproteins. Yet, it remains largely unknown how triglycerides are loaded onto these particles. Mutations in Phospholipase A2 group 12B (PLA2G12B) are known to disrupt lipoprotein homeostasis, but its mechanistic role in this process remains unclear. Here we report that PLA2G12B channels lipids within the lumen of the endoplasmic reticulum into nascent lipoproteins. This activity promotes efficient lipid secretion while preventing excess accumulation of intracellular lipids. We characterize the functional domains, subcellular localization, and interacting partners of PLA2G12B, demonstrating that PLA2G12B is calcium-dependent and tightly associated with the membrane of the endoplasmic reticulum. We also detect profound resistance to atherosclerosis in PLA2G12B mutant mice, suggesting an evolutionary tradeoff between triglyceride transport and cardiovascular disease risk. Here we identify PLA2G12B as a key driver of triglyceride incorporation into vertebrate lipoproteins.


Assuntos
Retículo Endoplasmático , Lipoproteínas , Animais , Camundongos , Transporte Biológico , Retículo Endoplasmático/metabolismo , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
3.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38131137

RESUMO

Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.


Assuntos
Disenteria Bacilar , Animais , Humanos , Disenteria Bacilar/genética , Shigella flexneri/genética , Shigella flexneri/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/microbiologia , Inflamação/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Nat Commun ; 14(1): 7994, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042913

RESUMO

Aortic aneurysms, which may dissect or rupture acutely and be lethal, can be a part of multisystem disorders that have a heritable basis. We report four patients with deficiency of selenocysteine-containing proteins due to selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) mutations who show early-onset, progressive, aneurysmal dilatation of the ascending aorta due to cystic medial necrosis. Zebrafish and male mice with global or vascular smooth muscle cell (VSMC)-targeted disruption of Secisbp2 respectively show similar aortopathy. Aortas from patients and animal models exhibit raised cellular reactive oxygen species, oxidative DNA damage and VSMC apoptosis. Antioxidant exposure or chelation of iron prevents oxidative damage in patient's cells and aortopathy in the zebrafish model. Our observations suggest a key role for oxidative stress and cell death, including via ferroptosis, in mediating aortic degeneration.


Assuntos
Aneurisma Aórtico , Peixe-Zebra , Humanos , Masculino , Camundongos , Animais , Selenocisteína , Músculo Liso Vascular/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Selenoproteínas/genética , Miócitos de Músculo Liso/metabolismo
5.
Cytoskeleton (Hoboken) ; 80(7-8): 266-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855298

RESUMO

Septins are evolutionarily conserved GTP-binding proteins known for their roles in cell division and host defence against Shigella infection. Although septin group members are viewed to function as hetero-oligomeric complexes, the role of individual septins within these complexes or in isolation is poorly understood. Decades of work using mouse models has shown that some septins (including SEPT7) are essential for animal development, while others (including SEPT6) are dispensable, suggesting that some septins may compensate for the absence of others. The zebrafish genome encodes 19 septin genes, representing the full complement of septin groups described in mice and humans. In this report, we characterise null mutants for zebrafish Sept6 (a member of the SEPT6 group) and Sept15 (a member of the SEPT7 group) and test their role in zebrafish development and host defence against Shigella infection. We show that null mutants for Sept6 and Sept15 are both viable, and that expression of other zebrafish septins are not significantly affected by their mutation. Consistent with previous reports using knockdown of Sept2, Sept7b, and Sept15, we show that Sept6 and Sept15 are required for host defence against Shigella infection. These results highlight Shigella infection of zebrafish as a powerful system to study the role of individual septins in vivo.


Assuntos
Disenteria Bacilar , Septinas , Animais , Disenteria Bacilar/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Septinas/genética , Septinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(7): e2217673120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745788

RESUMO

Biallelic mutations in the glucocerebrosidase (GBA1) gene cause Gaucher disease, characterized by lysosomal accumulation of glucosylceramide and glucosylsphingosine in macrophages. Gaucher and other lysosomal diseases occur with high frequency in Ashkenazi Jews. It has been proposed that the underlying mutations confer a selective advantage, in particular conferring protection against tuberculosis. Here, using a zebrafish Gaucher disease model, we find that the mutation GBA1 N370S, predominant among Ashkenazi Jews, increases resistance to tuberculosis through the microbicidal activity of glucosylsphingosine in macrophage lysosomes. Consistent with lysosomal accumulation occurring only in homozygotes, heterozygotes remain susceptible to tuberculosis. Thus, our findings reveal a mechanistic basis for protection against tuberculosis by GBA1 N370S and provide biological plausibility for its selection if the relatively mild deleterious effects in homozygotes were offset by significant protection against tuberculosis, a rampant killer of the young in Europe through the Middle Ages into the 19th century.


Assuntos
Doença de Gaucher , Tuberculose , Animais , Doença de Gaucher/genética , Peixe-Zebra/genética , Glucosilceramidase/genética , Mutação , Tuberculose/genética , Tuberculose/prevenção & controle
7.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765834

RESUMO

Hotspot mutations in the NRAS gene are causative genetic events associated with the development of melanoma. Currently, there are no FDA-approved drugs directly targeting NRAS mutations. Previously, we showed that p38 acts as a tumor suppressor in vitro and in vivo with respect to NRAS-mutant melanoma. We observed that because of p38 activation through treatment with the protein synthesis inhibitor, anisomycin leads to a transient upregulation of several targets of the cAMP pathway, representing a stressed cancer cell state that is often observed by therapeutic doses of MAPK inhibitors in melanoma patients. Meanwhile, genetically induced p38 or its stable transduction leads to a distinct cellular transcriptional state. Contrary to previous work showing an association of invasiveness with high p38 levels in BRAF-mutated melanoma, there was no correlation of p38 expression with NRAS-mutant melanoma invasion, highlighting the difference in BRAF and NRAS-driven melanomas. Although the role of p38 has been reported to be that of both tumor suppressor and oncogene, we show here that p38 specifically plays the role of a tumor suppressor in NRAS-mutant melanoma. Both the transient and stable activation of p38 elicits phosphorylation of mTOR, reported to be a master switch in regulating autophagy. Indeed, we observed a correlation between elevated levels of phosphorylated mTOR and a reduction in LC3 conversion (LCII/LCI), indicative of suppressed autophagy. Furthermore, a reduction in actin intensity in p38-high cells strongly suggests a role of mTOR in regulating actin and a remodeling in the NRAS-mutant melanoma cells. Therefore, p38 plays a tumor suppressive role in NRAS-mutant melanomas at least partially through the mechanism of mTOR upregulation, suppressed autophagy, and reduced actin polymerization. One or more combinations of MEK inhibitors with either anisomycin, rapamycin, chloroquine/bafilomycin, and cytochalasin modulate p38 activation, mTOR phosphorylation, autophagy, and actin polymerization, respectively, and they may provide an alternate route to targeting NRAS-mutant melanoma.

8.
Genetics ; 222(4)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36218393

RESUMO

Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.


Assuntos
Fator 4 Nuclear de Hepatócito , Mucosa Intestinal , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/fisiologia , Mucosa Intestinal/embriologia , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Intestinos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
9.
Cell ; 185(20): 3720-3738.e13, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36103894

RESUMO

Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity's most lethal pathogen, is successful in only a minority of infected individuals.


Assuntos
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculose , Animais , Mycobacterium tuberculosis/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra
10.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35514229

RESUMO

Manganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole-animal Ca2+ levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with Ca2+ dyshomeostasis and cellular stress. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Transporte de Cátions , Distonia , Animais , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Distonia/genética , Íons/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Front Neurosci ; 16: 794653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210987

RESUMO

Ankyrin repeat and kinase domain containing 1 (ANKK1) is a member of the receptor-interacting protein serine/threonine kinase family, known to be involved in cell proliferation, differentiation and activation of transcription factors. Genetic variation within the ANKK1 locus is suggested to play a role in vulnerability to addictions. However, ANKK1 mechanism of action is still poorly understood. It has been suggested that ANKK1 may affect the development and/or functioning of dopaminergic pathways. To test this hypothesis, we generated a CRISPR-Cas9 loss of function ankk1 zebrafish line causing a 27 bp insertion that disrupts the ankk1 sequence introducing an early stop codon. We found that ankk1 transcript levels were significantly lower in ankk1 mutant (ankk127ins ) fish compared to their wild type (ankk1 +/+) siblings. In ankk1 +/+ adult zebrafish brain, ankk1 protein was detected in isocortex, hippocampus, basolateral amygdala, mesencephalon, and cerebellum, resembling the mammalian distribution pattern. In contrast, ankk1 protein was reduced in the brain of ankk127ins/27ins fish. Quantitative polymerase chain reaction analysis revealed an increase in expression of drd2b mRNA in ankk127ins at both larval and adult stages. In ankk1 +/+ adult zebrafish brain, drd2 protein was detected in cerebral cortex, cerebellum, hippocampus, and caudate homolog regions, resembling the pattern in humans. In contrast, drd2 expression was reduced in cortical regions of ankk127ins/27ins being predominantly found in the hindbrain. No differences in the number of cell bodies or axonal projections detected by anti-tyrosine hydroxylase immunostaining on 3 days post fertilization (dpf) larvae were found. Behavioral analysis revealed altered sensitivity to effects of both amisulpride and apomorphine on locomotion and startle habituation, consistent with a broad loss of both pre and post synaptic receptors. Ankk127ins mutants showed reduced sensitivity to the effect of the selective dopamine receptor antagonist amisulpride on locomotor responses to acoustic startle and were differentially sensitive to the effects of the non-selective dopamine agonist apomorphine on both locomotion and habituation. Taken together, our findings strengthen the hypothesis of a functional relationship between ANKK1 and DRD2, supporting a role for ANKK1 in the maintenance and/or functioning of dopaminergic pathways. Further work is needed to disentangle ANKK1's role at different developmental stages.

12.
Neurosci Biobehav Rev ; 135: 104559, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124155

RESUMO

Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.


Assuntos
Transtornos Mentais , Peixe-Zebra , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Drosophila , Humanos , Transtornos Mentais/genética , Camundongos , Modelos Animais , Peixe-Zebra/genética
13.
Elife ; 112022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175196

RESUMO

In model organisms, RNA-sequencing (RNA-seq) is frequently used to assess the effect of genetic mutations on cellular and developmental processes. Typically, animals heterozygous for a mutation are crossed to produce offspring with different genotypes. Resultant embryos are grouped by genotype to compare homozygous mutant embryos to heterozygous and wild-type siblings. Genes that are differentially expressed between the groups are assumed to reveal insights into the pathways affected by the mutation. Here we show that in zebrafish, differentially expressed genes are often over-represented on the same chromosome as the mutation due to different levels of expression of alleles from different genetic backgrounds. Using an incross of haplotype-resolved wild-type fish, we found evidence of widespread allele-specific expression, which appears as differential expression when comparing embryos homozygous for a region of the genome to their siblings. When analysing mutant transcriptomes, this means that the differential expression of genes on the same chromosome as a mutation of interest may not be caused by that mutation. Typically, the genomic location of a differentially expressed gene is not considered when interpreting its importance with respect to the phenotype. This could lead to pathways being erroneously implicated or overlooked due to the noise of spurious differentially expressed genes on the same chromosome as the mutation. These observations have implications for the interpretation of RNA-seq experiments involving outbred animals and non-inbred model organisms.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Alelos , Animais , Expressão Gênica , Heterozigoto , Mutação , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Bio Protoc ; 12(1): e4284, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35118175

RESUMO

RNA sequencing allows for the quantification of the transcriptome of embryos to investigate transcriptional responses to various perturbations (e.g., mutations, infections, drug treatments). Previous protocols either lack the option to genotype individual samples, or are laborious and therefore difficult to do at a large scale. We have developed a protocol to extract total nucleic acid from individual zebrafish embryos. Individual embryos are lysed in 96-well plates and nucleic acid is extracted using SPRI beads. The total nucleic acid can be genotyped and then DNase I treated to produce RNA samples for sequencing. This protocol allows for processing large numbers of individual samples, with the ability to genotype each sample, which makes it possible to undertake transcriptomic analysis on mutants at timepoints before the phenotype is visible. Graphic abstract: Extraction of total nucleic acid from individual zebrafish embryos for genotyping and RNA-seq.

15.
Pigment Cell Melanoma Res ; 34(2): 150-162, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32910840

RESUMO

Oncogenic BRAF and NRAS mutations drive human melanoma initiation. We used transgenic zebrafish to model NRAS-mutant melanoma, and the rapid tumor onset allowed us to study candidate tumor suppressors. We identified P38α-MAPK14 as a potential tumor suppressor in The Cancer Genome Atlas melanoma cohort of NRAS-mutant melanomas, and overexpression significantly increased the time to tumor onset in transgenic zebrafish with NRAS-driven melanoma. Pharmacological activation of P38α-MAPK14 using anisomycin reduced in vitro viability of melanoma cultures, which we confirmed by stable overexpression of p38α. We observed that the viability of MEK inhibitor resistant melanoma cells could be reduced by combined treatment of anisomycin and MEK inhibition. Our study demonstrates that activating the p38α-MAPK14 pathway in the presence of oncogenic NRAS abrogates melanoma in vitro and in vivo. SIGNIFICANCE: The significance of our study is in the accountability of NRAS mutations in melanoma. We demonstrate here that activation of p38α-MAPK14 pathway can abrogate NRAS-mutant melanoma which is contrary to the previously published role of p38α-MAPK14 pathway in BRAF mutant melanoma. These results implicate that BRAF and NRAS-mutant melanoma may not be identical biologically. We also demonstrate the translational benefit of our study by using a small molecule compound-anisomycin (already in use for other diseases in clinical trials) to activate p38α-MAPK14 pathway.


Assuntos
GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/prevenção & controle , Proteínas de Membrana/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Mutação , Animais , Anisomicina/farmacologia , Apoptose , Proliferação de Células , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Células Tumorais Cultivadas , Peixe-Zebra
16.
Front Psychiatry ; 12: 795175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082702

RESUMO

Developmental consequences of prenatal drug exposure have been reported in many human cohorts and animal studies. The long-lasting impact on the offspring-including motor and cognitive impairments, cranial and cardiac anomalies and increased prevalence of ADHD-is a socioeconomic burden worldwide. Identifying the molecular changes leading to developmental consequences could help ameliorate the deficits and limit the impact. In this study, we have used zebrafish, a well-established behavioral and genetic model with conserved drug response and reward pathways, to identify changes in behavior and cellular pathways in response to developmental exposure to amphetamine, nicotine or oxycodone. In the presence of the drug, exposed animals showed altered behavior, consistent with effects seen in mammalian systems, including impaired locomotion and altered habituation to acoustic startle. Differences in responses seen following acute and chronic exposure suggest adaptation to the presence of the drug. Transcriptomic analysis of exposed larvae revealed differential expression of numerous genes and alterations in many pathways, including those related to cell death, immunity and circadian rhythm regulation. Differential expression of circadian rhythm genes did not correlate with behavioral changes in the larvae, however, two of the circadian genes, arntl2 and per2, were also differentially expressed at later stages of development, suggesting a long-lasting impact of developmental exposures on circadian gene expression. The immediate-early genes, egr1, egr4, fosab, and junbb, which are associated with synaptic plasticity, were downregulated by all three drugs and in situ hybridization showed that the expression for all four genes was reduced across all neuroanatomical regions, including brain regions implicated in reward processing, addiction and other psychiatric conditions. We anticipate that these early changes in gene expression in response to drug exposure are likely to contribute to the consequences of prenatal exposure and their discovery might pave the way to therapeutic intervention to ameliorate the long-lasting deficits.

17.
PLoS Genet ; 16(8): e1008941, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760060

RESUMO

Apolipoprotein B-containing lipoproteins (B-lps) are essential for the transport of hydrophobic dietary and endogenous lipids through the circulation in vertebrates. Zebrafish embryos produce large numbers of B-lps in the yolk syncytial layer (YSL) to move lipids from yolk to growing tissues. Disruptions in B-lp production perturb yolk morphology, readily allowing for visual identification of mutants with altered B-lp metabolism. Here we report the discovery of a missense mutation in microsomal triglyceride transfer protein (Mtp), a protein that is essential for B-lp production. This mutation of a conserved glycine residue to valine (zebrafish G863V, human G865V) reduces B-lp production and results in yolk opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. However, this phenotype is milder than that of the previously reported L475P stalactite (stl) mutation. MTP transfers lipids, including triglycerides and phospholipids, to apolipoprotein B in the ER for B-lp assembly. In vitro lipid transfer assays reveal that while both MTP mutations eliminate triglyceride transfer activity, the G863V mutant protein unexpectedly retains ~80% of phospholipid transfer activity. This residual phospholipid transfer activity of the G863V mttp mutant protein is sufficient to support the secretion of small B-lps, which prevents intestinal fat malabsorption and growth defects observed in the mttpstl/stl mutant zebrafish. Modeling based on the recent crystal structure of the heterodimeric human MTP complex suggests the G865V mutation may block triglyceride entry into the lipid-binding cavity. Together, these data argue that selective inhibition of MTP triglyceride transfer activity may be a feasible therapeutic approach to treat dyslipidemia and provide structural insight for drug design. These data also highlight the power of yolk transport studies to identify proteins critical for B-lp biology.


Assuntos
Proteínas de Transporte/genética , Lipídeos/genética , Lipoproteínas/genética , Triglicerídeos/genética , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Trato Gastrointestinal/metabolismo , Humanos , Imunoprecipitação , Gotículas Lipídicas/metabolismo , Lipoproteínas/metabolismo , Mutação de Sentido Incorreto/genética , Mutação Puntual/genética , Transporte Proteico/genética , Triglicerídeos/metabolismo , Peixe-Zebra/genética
18.
Dev Cell ; 54(3): 317-332.e9, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652076

RESUMO

Melanocytes, replenished throughout life by melanocyte stem cells (MSCs), play a critical role in pigmentation and melanoma. Here, we reveal a function for the metastasis-associated phosphatase of regenerating liver 3 (PRL3) in MSC regeneration. We show that PRL3 binds to the RNA helicase DDX21, thereby restricting productive transcription by RNAPII at master transcription factor (MITF)-regulated endolysosomal vesicle genes. In zebrafish, this mechanism controls premature melanoblast expansion and differentiation from MSCs. In melanoma patients, restricted transcription of this endolysosomal vesicle pathway is a hallmark of PRL3-high melanomas. Our work presents the conceptual advance that PRL3-mediated control of transcriptional elongation is a differentiation checkpoint mechanism for activated MSCs and has clinical relevance for the activity of PRL3 in regenerating tissue and cancer.


Assuntos
Diferenciação Celular/genética , RNA Helicases DEAD-box/metabolismo , Melanócitos/citologia , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Células-Tronco/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
Elife ; 92020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32209227

RESUMO

To facilitate smoking genetics research we determined whether a screen of mutagenized zebrafish for nicotine preference could predict loci affecting smoking behaviour. From 30 screened F3 sibling groups, where each was derived from an individual ethyl-nitrosurea mutagenized F0 fish, two showed increased or decreased nicotine preference. Out of 25 inactivating mutations carried by the F3 fish, one in the slit3 gene segregated with increased nicotine preference in heterozygous individuals. Focussed SNP analysis of the human SLIT3 locus in cohorts from UK (n=863) and Finland (n=1715) identified two variants associated with cigarette consumption and likelihood of cessation. Characterisation of slit3 mutant larvae and adult fish revealed decreased sensitivity to the dopaminergic and serotonergic antagonist amisulpride, known to affect startle reflex that is correlated with addiction in humans, and increased htr1aa mRNA expression in mutant larvae. No effect on neuronal pathfinding was detected. These findings reveal a role for SLIT3 in development of pathways affecting responses to nicotine in zebrafish and smoking in humans.


Assuntos
Condicionamento Clássico/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Nicotina/administração & dosagem , Fumar Tabaco/genética , Proteínas de Peixe-Zebra/genética , Amissulprida/farmacologia , Animais , Bupropiona/farmacologia , Comportamento de Escolha , Condicionamento Clássico/efeitos dos fármacos , Feminino , Loci Gênicos , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1A de Serotonina/fisiologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...