Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0131023, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221735

RESUMO

The socially parasitic ant genus Myrmoxenus varies strongly in fundamental life history traits, such as queen-worker ratio, the timing of sexual production, and mating behavior. Myrmoxenus queens generally take over nests of Temnothorax ants, kill the resident queen by throttling, and force the workers to take care of the social parasite's brood. Young queens of M. ravouxi and other species produce large numbers of workers, which during "slave-raids" pillage host pupae from neighboring Temnothorax colonies to increase the workforce in their own nests. Other species, such as M. corsicus, have lost caste polyphenism and rear only male and female sexual offspring. Using sequences of the genes CO I/CO II and wingless we reconstruct the phylogeny of Myrmoxenus and document that the worker caste was lost convergently at least three times. Furthermore, mating in the nest and inbreeding obviously also evolved in parallel from ancestors whose sexuals presumably mated during nuptial flights. Myrmoxenus might thus provide a suitable model to investigate caste differentiation and the plasticity of mating behavior in Hymenoptera.


Assuntos
Formigas/fisiologia , Evolução Biológica , Endogamia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino
2.
BMC Ecol ; 11: 21, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21961560

RESUMO

BACKGROUND: Efficient division of reproductive labor is a crucial characteristic of social insects and underlies their ecological and evolutionary success. Despite of the harmonious appearance of insect societies, nestmates may have different interests concerning the partitioning of reproduction among group members. This may lead to conflict about reproductive rights. As yet, few studies have investigated the allocation of reproduction among queens in multi - queen societies ("reproductive skew"). In the ant Leptothorax acervorum, reproductive skew varies considerably among populations. While reproduction is quite equally shared among nestmate queens in most populations from boreal Eurasia (low skew), colonies from populations at the edge of the species' range are characterized by "functional monogyny," i.e., high skew. The proximate mechanisms underlying high skew, in particular how workers influence which queen lays eggs, are not well understood. We investigated the behavior of queens and workers in functionally monogynous colonies of L. acervorum from two mountain ranges in central Spain. RESULTS: We provide evidence for both queen and worker influence on the outcome of conflict over reproduction in colonies of L. acervorum from Spain. The patterns of queen - queen aggression and worker - queen grooming and feeding after hibernation allowed predicting, which queen later began to lay eggs. In contrast, worker aggression towards queens was not clearly associated with a queen's future reproductive success. Queen - queen and worker - queen aggression differed in quality: queens typically engaged in ritualized dominance behavior, such as antennal boxing, while workers also attacked queens by biting and prolonged pulling on their legs and antennae. In several cases, overt worker aggression led to the expulsion of queens from the nest or their death. CONCLUSION: We conclude that queens of L. acervorum from Spain establish rank orders by ritualized dominance interactions, such as antennal boxing. Workers may reinforce these hierarchies by preferentially feeding and grooming high ranking queens and attacking lower ranking queens. Aggressive worker policing may thus stabilize functional monogyny. Optimal skew models predict that high skew in ants is associated with high dispersal costs. In central Spain, L. acervorum is restricted to small patches at higher elevations, which presumably makes dispersal and colony founding difficult. Because of the ecological requirements of L. acervorum and the predicted large impact of global change on central Spain, the functionally monogynous populations of this ant must be considered as threatened.


Assuntos
Formigas/fisiologia , Espécies em Perigo de Extinção , Comportamento Sexual Animal , Predomínio Social , Agressão , Animais , Comportamento Animal , Conflito Psicológico , Feminino , Masculino , Reprodução , Espanha
3.
Curr Biol ; 17(21): 1903-7, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17964165

RESUMO

An ant supercolony is a very large entity with very many queens. Although normal colonies of small extent and few queens remain distinct, a supercolony is integrated harmoniously over a large area [1, 2]. The lack of aggression is advantageous: Aggression is costly, involving direct and indirect losses and recognition errors [3, 4]. Indeed, supercolonial ants are among the ecologically most successful organisms [5-7]. But how supercolonies arise remains mysterious [1, 2, 8]. Suggestions include that reduced within-colony relatedness or reduced self-nonself discrimination would foster supercolony formation [1, 2, 5, 7, 9-12]. However, one risks confusing correlation and causality in deducing the evolution from distinct colonies to supercolonies when observing established supercolonies. It might help to follow up observations of another lack of aggression, that between single-queened colonies in some ant species. We show that the single-queened Lasius austriacus lacks aggression between colonies and occasionally integrates workers across colonies but maintains high within-colony relatedness and self-nonself discrimination. Provided that the ecological framework permits, reduced aggression might prove adaptive for any ant colony irrespective of within-colony relatedness. Abandoning aggression while maintaining discrimination might be a first stage in supercolony formation. This adds to the emphasis of ecology as central to the evolution of cooperation in general [13].


Assuntos
Formigas/genética , Ecossistema , Agressão , Animais , Formigas/fisiologia , Evolução Biológica , Feminino , Genótipo , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular
4.
Proc Biol Sci ; 269(1504): 2023-7, 2002 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-12396501

RESUMO

Some Tetraponera ants (Formicidae, Pseudomyrmecinae) subsist almost entirely on amino acid deficient honeydew secretions of pseudococcids and harbour a dense aggregation of bacterial symbionts in a unique pouch-shaped organ at the junction of the midgut and the intestine. The organ is surrounded by a network of intruding tracheae and Malpighian tubules, suggesting that these bacteria are involved in the oxidative recycling of nitrogen-rich metabolic waste. We have examined the ultrastructure of these bacteria and have amplified, cloned and sequenced ribosomal RNA-encoding genes, showing that the ant pouch contains a series of close relatives of Flavobacteria and Rhizobium, Methylobacterium, Burkholderia and Pseudomonas nitrogen-fixing root-nodule bacteria. We argue that pouch bacteria have been repeatedly 'domesticated' by the ants as nitrogen-recycling endosymbionts. This ant-associated community of mutualists is, to our knowledge, the first finding of symbionts related to root-nodule bacteria in animals.


Assuntos
Formigas/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Fixação de Nitrogênio , Filogenia , Simbiose , Animais , Formigas/anatomia & histologia , Formigas/ultraestrutura , Bactérias/ultraestrutura , Feminino , Intestinos/anatomia & histologia , Intestinos/microbiologia , Intestinos/ultraestrutura , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...