Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(3): e10508, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206248

RESUMO

We have developed a serology test platform for identifying individuals with prior exposure to specific viral infections and provide data to help reduce public health risks. The serology test composed of a pair of cell lines engineered to express either a viral envelop protein (Target Cell) or a receptor to recognize the Fc region of an antibody (Reporter Cell), that is, Diagnostic-Cell-Complex (DxCell-Complex). The formation of an immune synapse, facilitated by the analyte antibody, resulted into a dual-reporter protein expression by the Reporter Cell. We validated it with human serum with confirmed history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. No signal amplification steps were necessary. The DxCell-Complex quantitatively detected the target-specific immunoglobulin G (IgG) within 1 h. Validation with clinical human serum containing SARS-CoV-2 IgG antibodies confirmed 97.04% sensitivity and 93.33% specificity. The platform can be redirected against other antibodies. Self-replication and activation-induced cell signaling, two attributes of the cell, will enable rapid and cost-effective manufacturing and its operation in healthcare facilities without requiring time-consuming signal amplification steps.

2.
Front Microbiol ; 13: 879152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495669

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of the COVID-19 pandemic, is initiated by its binding to the ACE2 receptor and other co-receptors on mucosal epithelial cells. Variable outcomes of the infection and disease severity can be influenced by pre-existing risk factors. Human immunodeficiency virus (HIV), the cause of AIDS, targets the gut mucosal immune system and impairs epithelial barriers and mucosal immunity. We sought to determine the impact and mechanisms of pre-existing HIV infection increasing mucosal vulnerability to SARS-CoV-2 infection and disease. We investigated changes in the expression of ACE2 and other SARS-CoV-2 receptors and related pathways in virally inflamed gut by using the SIV infected rhesus macaque model of HIV/AIDS. Immunohistochemical analysis showed sustained/enhanced ACE2 expression in the gut epithelium of SIV infected animals compared to uninfected controls. Gut mucosal transcriptomic analysis demonstrated enhanced expression of host factors that support SARS-CoV-2 entry, replication, and infection. Metabolomic analysis of gut luminal contents revealed the impact of SIV infection as demonstrated by impaired mitochondrial function and decreased immune response, which render the host more vulnerable to other pathogens. In summary, SIV infection resulted in sustained or increased ACE2 expression in an inflamed and immune-impaired gut mucosal microenvironment. Collectively, these mucosal changes increase the susceptibility to SARS-CoV-2 infection and disease severity and result in ineffective viral clearance. Our study highlights the use of the SIV model of AIDS to fill the knowledge gap of the enteric mechanisms of co-infections as risk factors for poor disease outcomes, generation of new viral variants and immune escape in COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...