Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0279491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630378

RESUMO

Many tropical wet forests are species-rich and have relatively even species frequency distributions. But, dominance by a single canopy species can also occur in tropical wet climates and can remain stable for centuries. These are uncommon globally, with the African wet tropics supporting more such communities than the Neotropics or Southeast Asia. Differences in regional evolutionary histories are implied by biogeography: most of Africa's monodominance-forming species are Amherstieae-tribe legumes; monodominance in Neotropical forests occur among diverse taxonomic groups, often legumes, but rarely Amherstieae, and monodominance in Southeast Asian forests occurs mostly among Dipterocarpaceae species. African monodominant forests have been characterized ecologically and taxonomically, but their deep-time history is unknown despite their significant presence and bottom-up ecological influence on diversity. Herein we describe fossil leaflets of Englerodendron mulugetanum sp. nov., an extinct species of the extant genus Englerodendron (Berlinia Clade, Amherstieae, Detarioideae) from the 21.73 Ma Mush Valley site in Ethiopia. We also document a detailed study of associated legume pollen, which originate from a single taxon sharing characters with more than one extant descendant. Taxonomically, the pollen is most comparable to that from some extant Englerodendron species and supports a likely affiliation with the Englerodendron macrofossils. The Mush Valley site provides the first fossil evidence of a monodominant tropical forest in Africa as represented by leaflets and pollen. Previous studies documented >2400 leaves and leaflets from localities at six stratigraphic levels spanning 50,000-60,000 years of nearly continuous deposition within seven meters of section; all but the basal level contain ≥ 50% E. mulugetanum leaflets. Modern leaf litter studies in African mixed vs. monodominant forests indicates the likelihood of monodominance in the forests that surrounded the Mush paleolake, particularly after the basal level. Thus, we provide an early case for monodominance within the Amherstieae legumes in Africa.


Assuntos
Fabaceae , Etiópia , Árvores , Florestas , Evolução Biológica , Verduras , Clima Tropical
2.
New Phytol ; 235(1): 41-51, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322882

RESUMO

We compiled hydrogen and oxygen stable isotope compositions (δ2 H and δ18 O) of leaf water from multiple biomes to examine variations with environmental drivers. Leaf water δ2 H was more closely correlated with δ2 H of xylem water or atmospheric vapour, whereas leaf water δ18 O was more closely correlated with air relative humidity. This resulted from the larger proportional range for δ2 H of meteoric waters relative to the extent of leaf water evaporative enrichment compared with δ18 O. We next expressed leaf water as isotopic enrichment above xylem water (Δ2 H and Δ18 O) to remove the impact of xylem water isotopic variation. For Δ2 H, leaf water still correlated with atmospheric vapour, whereas Δ18 O showed no such correlation. This was explained by covariance between air relative humidity and the Δ18 O of atmospheric vapour. This is consistent with a previously observed diurnal correlation between air relative humidity and the deuterium excess of atmospheric vapour across a range of ecosystems. We conclude that 2 H and 18 O in leaf water do indeed reflect the balance of environmental drivers differently; our results have implications for understanding isotopic effects associated with water cycling in terrestrial ecosystems and for inferring environmental change from isotopic biomarkers that act as proxies for leaf water.


Assuntos
Ecossistema , Água , Isótopos de Oxigênio/análise , Folhas de Planta/química , Xilema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...