Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2340, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491013

RESUMO

Protein synthesis is frequently deregulated during tumorigenesis. However, the precise contexts of selective translational control and the regulators of such mechanisms in cancer is poorly understood. Here, we uncovered CNOT3, a subunit of the CCR4-NOT complex, as an essential modulator of translation in myeloid leukemia. Elevated CNOT3 expression correlates with unfavorable outcomes in patients with acute myeloid leukemia (AML). CNOT3 depletion induces differentiation and apoptosis and delayed leukemogenesis. Transcriptomic and proteomic profiling uncovers c-MYC as a critical downstream target which is translationally regulated by CNOT3. Global analysis of mRNA features demonstrates that CNOT3 selectively influences expression of target genes in a codon usage dependent manner. Furthermore, CNOT3 associates with the protein network largely consisting of ribosomal proteins and translation elongation factors in leukemia cells. Overall, our work elicits the direct requirement for translation efficiency in tumorigenesis and propose targeting the post-transcriptional circuitry via CNOT3 as a therapeutic vulnerability in AML.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Fatores de Transcrição , Humanos , Carcinogênese/genética , Diferenciação Celular , Leucemia Mieloide Aguda/genética , Receptores CCR4 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Mol Metab ; 80: 101875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218535

RESUMO

OBJECTIVE: We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS: Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS: miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS: These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , MicroRNAs , Obesidade Materna , Traumatismo por Reperfusão , Humanos , Gravidez , Masculino , Adulto , Feminino , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade Materna/metabolismo , Traumatismo por Reperfusão/metabolismo , Doenças Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo
4.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38011999

RESUMO

EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.


Assuntos
Linfócitos B , Fator de Iniciação 4A em Eucariotos , RNA Helicases , Animais , Camundongos , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases/metabolismo
5.
Nat Commun ; 14(1): 8419, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110444

RESUMO

DNA double-strand breaks (DSBs) are the most mutagenic form of DNA damage, and play a significant role in cancer biology, neurodegeneration and aging. However, studying DSB-induced mutagenesis is limited by our current approaches. Here, we describe iMUT-seq, a technique that profiles DSB-induced mutations at high-sensitivity and single-nucleotide resolution around endogenous DSBs. By depleting or inhibiting 20 DSB-repair factors we define their mutational signatures in detail, revealing insights into the mechanisms of DSB-induced mutagenesis. Notably, we find that homologous-recombination (HR) is more mutagenic than previously thought, inducing prevalent base substitutions and mononucleotide deletions at distance from the break due to DNA-polymerase errors. Simultaneously, HR reduces translocations, suggesting a primary role of HR is specifically the prevention of genomic rearrangements. The results presented here offer fundamental insights into DSB-induced mutagenesis and have significant implications for our understanding of cancer biology and the development of DDR-targeting chemotherapeutics.


Assuntos
Quebras de DNA de Cadeia Dupla , Neoplasias , Humanos , Reparo do DNA/genética , Mutagênese , Mutação , Recombinação Homóloga , DNA/genética , Neoplasias/genética
7.
Wiley Interdiscip Rev RNA ; : e1827, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009591

RESUMO

The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells that is most well-known to repress gene expression. Delivery of the complex to mRNAs through a multitude of distinct mechanisms accelerates their decay, yet Ccr4-Not also plays an important role in co-translational processes, such as co-translational association of proteins and delivery of translating mRNAs to organelles. The recent structure of Not5 interacting with the translated ribosome has brought to light that embedded information within the codon sequence can be monitored by recruitment of the Ccr4-Not complex to elongating ribosomes. Thereby, the Ccr4-Not complex is empowered with regulatory decisions determining the fate of proteins being synthesized and their encoding mRNAs. This review will focus on the roles of the complex in translation and dynamics of co-translation events. This article is categorized under: Translation > Mechanisms Translation > Regulation.

8.
Nature ; 623(7985): 183-192, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853125

RESUMO

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.


Assuntos
Compartimento Celular , Cromatina , Dano ao DNA , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Fase G1 , Histonas/metabolismo , Neoplasias/genética , Estruturas R-Loop , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
9.
Cancers (Basel) ; 15(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37568801

RESUMO

The protein output of different mRNAs can vary by two orders of magnitude; therefore, it is critical to understand the processes that control gene expression operating at the level of translation. Translatome-wide techniques, such as polysome profiling and ribosome profiling, are key methods for determining the translation rates occurring on specific mRNAs. These techniques are now widely used in cell lines; however, they are underutilised in tissues and cancer models. Ribonuclease (RNase) expression is often found to be higher in complex primary tissues in comparison to cell lines. Methods used to preserve RNA during lysis often use denaturing conditions, which need to be avoided when maintaining the interaction and position of the ribosome with the mRNA is required. Here, we detail the cell lysis conditions that produce high-quality RNA from several different tissues covering a range of endogenous RNase expression levels. We highlight the importance of RNA integrity for accurate determination of the global translation status of the cell as determined by polysome gradients and discuss key aspects to optimise for accurate assessment of the translatome from primary mouse tissue.

10.
Mol Oncol ; 17(7): 1212-1227, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36975767

RESUMO

The AMP-activated protein kinase (AMPK)-related kinase NUAK1 (NUAK family SNF1-like kinase 1) has emerged as a potential vulnerability in MYC-dependent cancer but the biological roles of NUAK1 in different settings are poorly characterised, and the spectrum of cancer types that exhibit a requirement for NUAK1 is unknown. Unlike canonical oncogenes, NUAK1 is rarely mutated in cancer and appears to function as an obligate facilitator rather than a cancer driver per se. Although numerous groups have developed small-molecule NUAK inhibitors, the circumstances that would trigger their use and the unwanted toxicities that may arise as a consequence of on-target activity are thus undetermined. Reasoning that MYC is a key effector of RAS pathway signalling and the GTPase KRAS is almost uniformly mutated in pancreatic ductal adenocarcinoma (PDAC), we investigated whether this cancer type exhibits a functional requirement for NUAK1. Here, we show that high NUAK1 expression is associated with reduced overall survival in PDAC and that inhibition or depletion of NUAK1 suppresses growth of PDAC cells in culture. We identify a previously unknown role for NUAK1 in regulating accurate centrosome duplication and show that loss of NUAK1 triggers genomic instability. The latter activity is conserved in primary fibroblasts, raising the possibility of undesirable genotoxic effects of NUAK1 inhibition.


Assuntos
Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta , Quinases Proteína-Quinases Ativadas por AMP , Neoplasias Pancreáticas/genética , Centrossomo/metabolismo , Proteínas Repressoras/metabolismo
11.
Nucleic Acids Res ; 51(4): 1859-1879, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727461

RESUMO

Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.


Assuntos
Fator de Iniciação 4A em Eucariotos , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Purinas , RNA Mensageiro/metabolismo , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo
12.
J Hepatol ; 78(5): 1028-1036, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702176

RESUMO

BACKGROUND & AIMS: Mouse models of lineage tracing have helped to describe the important subpopulations of hepatocytes responsible for liver regeneration. However, conflicting results have been obtained from different models. Herein, we aimed to reconcile these conflicting reports by repeating a key lineage-tracing study from pericentral hepatocytes and characterising this Axin2CreERT2 model in detail. METHODS: We performed detailed characterisation of the labelled population in the Axin2CreERT2 model. We lineage traced this cell population, quantifying the labelled population over 1 year and performed in-depth phenotypic comparisons, including transcriptomics, metabolomics and analysis of proteins through immunohistochemistry, of Axin2CreERT2 mice to WT counterparts. RESULTS: We found that after careful definition of a baseline population, there are marked differences in labelling between male and female mice. Upon induced lineage tracing there was no expansion of the labelled hepatocyte population in Axin2CreERT2 mice. We found substantial evidence of disrupted homeostasis in Axin2CreERT2 mice. Offspring are born with sub-Mendelian ratios and adult mice have perturbations of hepatic Wnt/ß-catenin signalling and related metabolomic disturbance. CONCLUSIONS: We find no evidence of predominant expansion of the pericentral hepatocyte population during liver homeostatic regeneration. Our data highlight the importance of detailed preclinical model characterisation and the pitfalls which may occur when comparing across sexes and backgrounds of mice and the effects of genetic insertion into native loci. IMPACT AND IMPLICATIONS: Understanding the source of cells which regenerate the liver is crucial to harness their potential to regrow injured livers. Herein, we show that cells which were previously thought to repopulate the liver play only a limited role in physiological regeneration. Our data helps to reconcile differing conclusions drawn from results from a number of prior studies and highlights methodological challenges which are relevant to preclinical models more generally.


Assuntos
Hiperplasia Nodular Focal do Fígado , Regeneração Hepática , Masculino , Feminino , Humanos , Regeneração Hepática/fisiologia , Hepatócitos/metabolismo , Fígado/metabolismo , Homeostase , Proliferação de Células , Proteína Axina/genética
13.
Nucleic Acids Res ; 50(18): 10487-10502, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200807

RESUMO

Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that have low levels of pre-existing hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.


Assuntos
RNA Helicases DEAD-box/metabolismo , Reparo do DNA , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Células HeLa , Humanos , Proteômica , Ubiquitinas/genética
14.
Elife ; 112022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35025731

RESUMO

Maternal obesity during pregnancy has immediate and long-term detrimental effects on the offspring heart. In this study, we characterized the cardiac and circulatory lipid profiles in late gestation E18.5 fetuses of diet-induced obese pregnant mice and established the changes in lipid abundance and fetal cardiac transcriptomics. We used untargeted and targeted lipidomics and transcriptomics to define changes in the serum and cardiac lipid composition and fatty acid metabolism in male and female fetuses. From these analyses we observed: (1) maternal obesity affects the maternal and fetal serum lipidome distinctly; (2) female fetal heart lipidomes are more sensitive to maternal obesity than males; (3) changes in lipid supply might contribute to early expression of lipolytic genes in mouse hearts exposed to maternal obesity. These results highlight the existence of sexually dimorphic responses of the fetal heart to the same in utero obesogenic environment and identify lipids species that might mediate programming of cardiovascular health.


Assuntos
Feto/metabolismo , Metabolismo dos Lipídeos/fisiologia , Miocárdio/metabolismo , Obesidade Materna/fisiopatologia , Animais , Feminino , Lipidômica , Masculino , Camundongos , Miocárdio/química , Gravidez , Transcriptoma/fisiologia
16.
Genome Biol ; 22(1): 284, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615539

RESUMO

BACKGROUND: Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell's requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. RESULTS: This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. CONCLUSIONS: We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/metabolismo , Fatores de Transcrição/fisiologia , Códon , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Ribossomos/metabolismo , Fatores de Transcrição/genética
17.
Oncogene ; 40(45): 6309-6320, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34584217

RESUMO

A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.


Assuntos
Códon/genética , Neoplasias/genética , RNA de Transferência/metabolismo , Códon/química , Humanos , Mutação , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Nat Commun ; 12(1): 4920, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389715

RESUMO

Malignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease.


Assuntos
Mesotelioma Maligno/genética , Oncogenes/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Amianto , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mesotelioma Maligno/induzido quimicamente , Mesotelioma Maligno/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Naftiridinas/farmacologia , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Células Tumorais Cultivadas
19.
DNA Repair (Amst) ; 105: 103158, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147942

RESUMO

The advent of genome-wide methods for identifying novel components in biological processes including CRISPR screens and proteomic studies, has transformed the research landscape within the biological sciences. However, each study normally investigates a single aspect of a process without integration of other published datasets. Here, we present Damage-Net, a program with a curated database of published results from a broad range of studies investigating DNA repair, that facilitates simple and quick meta-analysis. Users can incorporate their own datasets for analysis, and query genes of interest in the database. Importantly, this program also allows users to examine the correlation of genes of interest with pan-cancer patient survival and mutational burden effects. Interrogating these datasets revealed a network of genes that associated with cancer progression in adrenocortical carcinoma via facilitating mutational burden, ultimately contributing substantially to adrenocortical carcinoma's poor prognosis. Download at www.damage-net.co.uk.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Reparo do DNA , Mutação , Proteínas de Neoplasias/metabolismo , Proteômica , Software , Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Análise Mutacional de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Espectrometria de Massas , Proteínas de Neoplasias/genética
20.
Diabetologia ; 64(4): 890-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33501603

RESUMO

AIMS/HYPOTHESIS: Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. METHODS: miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic-hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. RESULTS: The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. CONCLUSIONS/INTERPRETATION: Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Proteínas de Homeodomínio/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade Materna/genética , Obesidade Materna/patologia , Fenótipo , Gravidez , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...