Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37388275

RESUMO

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but, where changes occur, the naming history of a sequence must be traceable. Here we outline the current issues and opportunities for the curation of germline IG/TR genes and present a forward-looking data model for building out more robust germline sets that can dovetail with current established processes. We describe interoperability standards for germline sets, and an approach to transparency based on principles of findability, accessibility, interoperability, and reusability.

2.
Cell Rep ; 41(2): 111468, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223741

RESUMO

Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction, and stroke and is the leading cause of mortality worldwide. Immunization of pro-atherogenic mice with malondialdehyde-modified low-density lipoprotein (MDA-LDL) neo-antigen is athero-protective. However, the immune response to MDA-LDL and the mechanisms responsible for this athero-protection are not completely understood. Here, we find that immunization of mice with MDA-LDL elicits memory B cells, plasma cells, and switched anti-MDA-LDL antibodies as well as clonal expansion and affinity maturation, indicating that MDA-LDL triggers a bona fide germinal center antibody response. Further, Prdm1fl/flAicda-Cre+/kiLdlr-/- pro-atherogenic chimeras, which lack germinal center-derived plasma cells, show accelerated atherosclerosis. Finally, we show that MDA-LDL immunization is not athero-protective in mice lacking germinal-center-derived plasma cells. Our findings give further support to the development of MDA-LDL-based vaccines for the prevention or treatment of atherosclerosis.


Assuntos
Aterosclerose , Vacinas , Animais , Formação de Anticorpos , Aterosclerose/prevenção & controle , Centro Germinativo , Lipoproteínas LDL , Malondialdeído/farmacologia , Camundongos , Vacinação
3.
Front Immunol ; 13: 888555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720344

RESUMO

The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is highly expressed in the BALB/cJ substrain. Only four of the BALB/c alleles were also observed in the C57BL/6 haplotype. The full set of inferred BALB/c sequences has been used to establish a BALB/c IGHV reference set, hosted at https://ogrdb.airr-community.org. We assessed whether assemblies from the Mouse Genome Project (MGP) are suitable for the determination of the genes of the IGH loci. Only 37 (43.5%) of the 85 confirmed IMGT-named BALB/c IGHV and 33 (42.9%) of the 77 confirmed non-IMGT IGHV were found in a search of the MGP BALB/cJ genome assembly. This suggests that current MGP assemblies are unsuitable for the comprehensive documentation of germline IGHVs and more efforts will be needed to establish strain-specific reference sets.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Animais , Haplótipos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência de DNA
4.
Methods Mol Biol ; 2453: 279-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622332

RESUMO

High-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR) has revolutionized the ability to carry out large-scale experiments to study the adaptive immune response. Since the method was first introduced in 2009, AIRR sequencing (AIRR-Seq) has been applied to survey the immune state of individuals, identify antigen-specific or immune-state-associated signatures of immune responses, study the development of the antibody immune response, and guide the development of vaccines and antibody therapies. Recent advancements in the technology include sequencing at the single-cell level and in parallel with gene expression, which allows the introduction of multi-omics approaches to understand in detail the adaptive immune response. Analyzing AIRR-seq data can prove challenging even with high-quality sequencing, in part due to the many steps involved and the need to parameterize each step. In this chapter, we outline key factors to consider when preprocessing raw AIRR-Seq data and annotating the genetic origins of the rearranged receptors. We also highlight a number of common difficulties with common AIRR-seq data processing and provide strategies to address them.


Assuntos
Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala , Anticorpos/genética , Humanos , Anotação de Sequência Molecular , Receptores Imunológicos/genética
5.
Methods Mol Biol ; 2453: 447-476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622339

RESUMO

High-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR ) has revolutionized the ability to study the adaptive immune response via large-scale experiments. Since 2009, AIRR sequencing (AIRR-seq) has been widely applied to survey the immune state of individuals (see "The AIRR Community Guide to Repertoire Analysis" chapter for details). One of the goals of the AIRR Community is to make the resulting AIRR-seq data FAIR (Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al. Sci Data 3:1-9, 2016), with a primary goal of making it easy for the research community to reuse AIRR-seq data (Breden et al. Front Immunol 8:1418, 2017; Scott and Breden. Curr Opin Syst Biol 24:71-77, 2020). The basis for this is the MiAIRR data standard (Rubelt et al. Nat Immunol 18:1274-1278, 2017). For long-term preservation, it is recommended that researchers store their sequence read data in an INSDC repository. At the same time, the AIRR Community has established the AIRR Data Commons (Christley et al. Front Big Data 3:22, 2020), a distributed set of AIRR-compliant repositories that store the critically important annotated AIRR-seq data based on the MiAIRR standard, making the data findable, interoperable, and, because the data are annotated, more valuable in its reuse. Here, we build on the other AIRR Community chapters and illustrate how these principles and standards can be incorporated into AIRR-seq data analysis workflows. We discuss the importance of careful curation of metadata to ensure reproducibility and facilitate data sharing and reuse, and we illustrate how data can be shared via the AIRR Data Commons.


Assuntos
Disseminação de Informação , Projetos de Pesquisa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Disseminação de Informação/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho
6.
Eur J Immunol ; 52(2): 237-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34710239

RESUMO

Single-cell antigen-receptor gene amplification and sequencing platforms have been used to characterize T cell receptor (TCR) repertoires but typically fail to generate paired full-length gene products for direct expression cloning and do not enable linking this data to cell phenotype information. To overcome these limitations, we established a high-throughput platform for the quantitative and qualitative analysis of human TCR repertoires that provides insights into the clonal and functional composition of human CD4+ and CD8+ αß T cells at the molecular and cellular level. The strategy is a powerful tool to qualitatively assess differences between antigen receptors of phenotypically defined αß T cell subsets, e.g. in immune responses to cancer, vaccination, or infection, and in autoimmune diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
7.
Nature ; 589(7841): 287-292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268892

RESUMO

Cardiovascular disease (CVD) is the leading cause of mortality in the world, with most CVD-related deaths resulting from myocardial infarction or stroke. The main underlying cause of thrombosis and cardiovascular events is atherosclerosis, an inflammatory disease that can remain asymptomatic for long periods. There is an urgent need for therapeutic and diagnostic options in this area. Atherosclerotic plaques contain autoantibodies1,2, and there is a connection between atherosclerosis and autoimmunity3. However, the immunogenic trigger and the effects of the autoantibody response during atherosclerosis are not well understood3-5. Here we performed high-throughput single-cell analysis of the atherosclerosis-associated antibody repertoire. Antibody gene sequencing of more than 1,700 B cells from atherogenic Ldlr-/- and control mice identified 56 antibodies expressed by in-vivo-expanded clones of B lymphocytes in the context of atherosclerosis. One-third of the expanded antibodies were reactive against atherosclerotic plaques, indicating that various antigens in the lesion can trigger antibody responses. Deep proteomics analysis identified ALDH4A1, a mitochondrial dehydrogenase involved in proline metabolism, as a target antigen of one of these autoantibodies, A12. ALDH4A1 distribution is altered during atherosclerosis, and circulating ALDH4A1 is increased in mice and humans with atherosclerosis, supporting the potential use of ALDH4A1 as a disease biomarker. Infusion of A12 antibodies into Ldlr-/- mice delayed plaque formation and reduced circulating free cholesterol and LDL, suggesting that anti-ALDH4A1 antibodies can protect against atherosclerosis progression and might have therapeutic potential in CVD.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/imunologia , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Autoanticorpos/imunologia , Autoantígenos/imunologia , 1-Pirrolina-5-Carboxilato Desidrogenase/sangue , Animais , Aterosclerose/sangue , Aterosclerose/diagnóstico , Autoanticorpos/sangue , Autoanticorpos/genética , Autoantígenos/sangue , Autoimunidade , Linfócitos B/imunologia , Biomarcadores/sangue , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Lipoproteínas LDL/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia , Placa Aterosclerótica/prevenção & controle , Proteômica , Receptores de LDL/deficiência , Receptores de LDL/genética , Análise de Célula Única
8.
Proc Natl Acad Sci U S A ; 117(8): 4320-4327, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047037

RESUMO

The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21-derived heavy chains (HCs) with IGLV3-21-derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable and constant LC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110-expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21*01 facilitates effective homotypic BCR-BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21*01-expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to subset 2L by including all IGLV3-21R110-expressing CLL cases regardless of IGHV mutational status. Moreover, the generation of monoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors.


Assuntos
Cadeias lambda de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos B/imunologia , Estudos de Coortes , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Predisposição Genética para Doença , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias lambda de Imunoglobulina/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Mutação Puntual , Receptores de Antígenos de Linfócitos B/genética
9.
Front Big Data ; 3: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33693395

RESUMO

The Adaptive Immune Receptor Repertoire (AIRR) Community is a research-driven group that is establishing a clear set of community-accepted data and metadata standards; standards-based reference implementation tools; and policies and practices for infrastructure to support the deposit, curation, storage, and use of high-throughput sequencing data from B-cell and T-cell receptor repertoires (AIRR-seq data). The AIRR Data Commons is a distributed system of data repositories that utilizes a common data model, a common query language, and common interoperability formats for storage, query, and downloading of AIRR-seq data. Here is described the principal technical standards for the AIRR Data Commons consisting of the AIRR Data Model for repertoires and rearrangements, the AIRR Data Commons (ADC) API for programmatic query of data repositories, a reference implementation for ADC API services, and tools for querying and validating data repositories that support the ADC API. AIRR-seq data repositories can become part of the AIRR Data Commons by implementing the data model and API. The AIRR Data Commons allows AIRR-seq data to be reused for novel analyses and empowers researchers to discover new biological insights about the adaptive immune system.

10.
F1000Res ; 9: 295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552475

RESUMO

Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin.


Assuntos
Conhecimento , Pesquisadores , Software , Previsões , Alemanha , Humanos
11.
Nucleic Acids Res ; 48(D1): D964-D970, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31566225

RESUMO

High-throughput sequencing of the adaptive immune receptor repertoire (AIRR-seq) is providing unprecedented insights into the immune response to disease and into the development of immune disorders. The accurate interpretation of AIRR-seq data depends on the existence of comprehensive germline gene reference sets. Current sets are known to be incomplete and unrepresentative of the degree of polymorphism and diversity in human and animal populations. A key issue is the complexity of the genomic regions in which they lie, which, because of the presence of multiple repeats, insertions and deletions, have not proved tractable with short-read whole genome sequencing. Recently, tools and methods for inferring such gene sequences from AIRR-seq datasets have become available, and a community approach has been developed for the expert review and publication of such inferences. Here, we present OGRDB, the Open Germline Receptor Database (https://ogrdb.airr-community.org), a public resource for the submission, review and publication of previously unknown receptor germline sequences together with supporting evidence.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica , Receptores Imunológicos/genética , Genômica/métodos , Humanos , Software , Navegador
12.
Immunol Cell Biol ; 97(10): 888-901, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441114

RESUMO

The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflects differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ) and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ and PWD/PhJ) and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline IGHV sequences were inferred in the wild-derived strains, including 247 not curated in the international ImMunoGeneTics information system. By contrast, 83/84 inferred NOD IGHV genes had previously been observed in C57BL/6 mice. Variability among the strains examined was observed for only a single IGHJ gene, involving a description of a novel allele. By contrast, unexpected variation was found in the IGHD gene loci, with four previously unreported IGHD gene sequences being documented. Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins. This suggests a similar level of diversity is likely present in the IGH loci of other classical inbred strains. This must now be documented if we are to properly understand interstrain variation in models of antibody-mediated disease.


Assuntos
Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Animais , Sequência de Bases , Bases de Dados Genéticas , Células Germinativas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
13.
Front Immunol ; 10: 435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936866

RESUMO

Immunoglobulins or antibodies are the main effector molecules of the B-cell lineage and are encoded by hundreds of variable (V), diversity (D), and joining (J) germline genes, which recombine to generate enormous IG diversity. Recently, high-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) of recombined V-(D)-J genes has offered unprecedented insights into the dynamics of IG repertoires in health and disease. Faithful biological interpretation of AIRR-seq studies depends upon the annotation of raw AIRR-seq data, using reference germline gene databases to identify the germline genes within each rearrangement. Existing reference databases are incomplete, as shown by recent AIRR-seq studies that have inferred the existence of many previously unreported polymorphisms. Completing the documentation of genetic variation in germline gene databases is therefore of crucial importance. Lymphocyte receptor genes and alleles are currently assigned by the Immunoglobulins, T cell Receptors and Major Histocompatibility Nomenclature Subcommittee of the International Union of Immunological Societies (IUIS) and managed in IMGT®, the international ImMunoGeneTics information system® (IMGT). In 2017, the IMGT Group reached agreement with a group of AIRR-seq researchers on the principles of a streamlined process for identifying and naming inferred allelic sequences, for their incorporation into IMGT®. These researchers represented the AIRR Community, a network of over 300 researchers whose objective is to promote all aspects of immunoglobulin and T-cell receptor repertoire studies, including the standardization of experimental and computational aspects of AIRR-seq data generation and analysis. The Inferred Allele Review Committee (IARC) was established by the AIRR Community to devise policies, criteria, and procedures to perform this function. Formalized evaluations of novel inferred sequences have now begun and submissions are invited via a new dedicated portal (https://ogrdb.airr-community.org). Here, we summarize recommendations developed by the IARC-focusing, to begin with, on human IGHV genes-with the goal of facilitating the acceptance of inferred allelic variants of germline IGHV genes. We believe that this initiative will improve the quality of AIRR-seq studies by facilitating the description of human IG germline gene variation, and that in time, it will expand to the documentation of TR and IG genes in many vertebrate species.


Assuntos
Alelos , Genes de Imunoglobulinas , Variação Genética/genética , Terminologia como Assunto , Recombinação V(D)J , Sequência de Bases , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Biblioteca Gênica , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Reação em Cadeia da Polimerase/métodos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Éxons VDJ/genética
14.
Eur J Immunol ; 49(8): 1269-1277, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017295

RESUMO

Precise clonal and functional assessments of the T cell receptor (TCR) repertoire diversity require paired TCRα and TCRß gene sequence information at monoclonal level. However, available single-cell strategies are typically limited in throughput and often do not provide full-length DNA templates for direct gene cloning. Here, we describe a high-throughput strategy for the unbiased amplification and automated sequence analysis of paired TCRα and TCRß genes from primary mouse T cells. The platform links cell phenotype and TCR gene sequence information at single-cell level. Furthermore, it enables direct functional analyses through the efficient cloning of both genes and the generation of stable TCR expressing cell lines. This highly efficient workflow is a powerful tool to determine the diversity and quality of the murine T-cell repertoire in various settings, for example in vaccine development, infectious diseases, autoimmunity, or cancer.


Assuntos
Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/fisiologia , Animais , Células Clonais , Camundongos , Fenótipo , Análise de Célula Única
15.
Methods Mol Biol ; 1956: 105-125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779032

RESUMO

The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in chronic lymphocytic leukemia have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire at single-cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow-cytometric isolation of single human B cells to the reverse transcription-polymerase chain reaction (RT-PCR)-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.


Assuntos
Anticorpos Monoclonais/genética , Linfócitos B/metabolismo , Clonagem Molecular/métodos , Citometria de Fluxo/métodos , Imunoglobulinas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Separação Celular/métodos , Vetores Genéticos/genética , Células HEK293 , Humanos , Cadeias J de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Proteínas Recombinantes/genética , Análise de Célula Única/métodos
16.
Front Immunol ; 10: 2961, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921202

RESUMO

Mammalian immunoglobulin (IG) genes are found in complex loci that contain hundreds of highly similar pseudogenes, functional genes and repetitive elements, which has made their investigation particularly challenging. High-throughput sequencing has provided new avenues for the investigation of these loci, and has recently been applied to study the IG genes of important inbred mouse strains, revealing unexpected differences between their IG loci. This demonstrated that the structural differences are of such magnitude that they call into question the merits of the current mouse IG gene nomenclatures. Three nomenclatures for the mouse IG heavy chain locus (Igh) are presently in use, and they are all positional nomenclatures using the C57BL/6 genome reference sequence as their template. The continued use of these nomenclatures requires that genes of other inbred strains be confidently identified as allelic variants of C57BL/6 genes, but this is clearly impossible. The unusual breeding histories of inbred mouse strains mean that, regardless of the genetics of wild mice, no single ancestral origin for the IG loci exists for laboratory mice. Here we present a general discussion of the challenges this presents for any IG nomenclature. Furthermore, we describe principles that could be followed in the formulation of a solution to these challenges. Finally, we propose a non-positional nomenclature that accords with the guidelines of the International Mouse Nomenclature Committee, and outline strategies that can be adopted to meet the nomenclature challenges if three systems are to give way to a new one.


Assuntos
Alelos , Genes de Imunoglobulinas , Loci Gênicos , Cadeias Pesadas de Imunoglobulinas , Cadeias kappa de Imunoglobulina , Animais , Cadeias Pesadas de Imunoglobulinas/classificação , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/classificação , Cadeias kappa de Imunoglobulina/genética , Camundongos , Terminologia como Assunto
17.
Front Immunol ; 9: 2206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323809

RESUMO

Increased interest in the immune system's involvement in pathophysiological phenomena coupled with decreased DNA sequencing costs have led to an explosion of antibody and T cell receptor sequencing data collectively termed "adaptive immune receptor repertoire sequencing" (AIRR-seq or Rep-Seq). The AIRR Community has been actively working to standardize protocols, metadata, formats, APIs, and other guidelines to promote open and reproducible studies of the immune repertoire. In this paper, we describe the work of the AIRR Community's Data Representation Working Group to develop standardized data representations for storing and sharing annotated antibody and T cell receptor data. Our file format emphasizes ease-of-use, accessibility, scalability to large data sets, and a commitment to open and transparent science. It is composed of a tab-delimited format with a specific schema. Several popular repertoire analysis tools and data repositories already utilize this AIRR-seq data format. We hope that others will follow suit in the interest of promoting interoperable standards.


Assuntos
Anticorpos/genética , Sequência de Bases , Sistemas de Gerenciamento de Base de Dados , Disseminação de Informação/métodos , Receptores de Antígenos de Linfócitos T/genética , Imunidade Adaptativa/genética , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Receptores Imunológicos/genética , Projetos de Pesquisa
18.
Sci Immunol ; 3(20)2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453292

RESUMO

Affinity maturation, the clonal selection and expansion of antigen-activated B cells expressing somatically mutated antibody variants that develop during T cell-dependent germinal center reactions, is considered pivotal for efficient development of protective B cell memory responses to infection and vaccination. Repeated antigen exposure promotes affinity maturation but each time also recruits antigen-reactive naïve B cells into the response. Here, we determined the relative impact of affinity maturation versus antigen-mediated clonal selection of naïve B cells to mount potent B cell memory responses in humans after repeated exposure to a complex pathogen, the malaria parasite Plasmodium falciparum (Pf). Using single-cell immunoglobulin (Ig) gene sequencing and production of recombinant monoclonal antibodies, we analyzed the origin, development, and quality of memory B cell responses to Pf circumsporozoite protein (PfCSP), the major sporozoite surface protein. We show that after repeated immunization of Pf-naïve volunteers with infectious Pf sporozoites (PfSPZ Challenge) under chloroquine prophylaxis (PfSPZ-CVac), the clonal selection of potent germline and memory B cell precursors against the central PfCSP NANP repeat outpaces affinity maturation because the majority of Ig gene mutations are affinity-neutral. Mathematical modeling explains how the efficiency of affinity maturation decreases strongly with antigen complexity. Thus, in the absence of long-term exposure, the frequency of antigen-reactive precursors and likelihood of their activation rather than affinity maturation will determine the quality of anti-PfCSP memory B cell responses. These findings have wide implications for the design of vaccination strategies to induce potent B cell memory responses against PfCSP and presumably other structurally complex antigens.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Seleção Clonal Mediada por Antígeno/imunologia , Malária/imunologia , Animais , Feminino , Humanos , Vacinas Antimaláricas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia
19.
Front Immunol ; 8: 1418, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163494

RESUMO

High-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1-3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications. New technology often spreads rapidly, sometimes more rapidly than the understanding of how to make the products of that technology reliable, reproducible, or usable by others. As complex technologies have developed, scientific communities have come together to adopt common standards, protocols, and policies for generating and sharing data sets, such as the MIAME protocols developed for microarray experiments. The Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address similar issues for HTS data of immune repertoires. The purpose of this perspective is to provide an overview of the AIRR Community's founding principles and present the progress that the AIRR Community has made in developing standards of practice and data sharing protocols. Finally, and most important, we invite all interested parties to join this effort to facilitate sharing and use of these powerful data sets (join@airr-community.org).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...