Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(2): 686-91, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21148102

RESUMO

Synthetic lethality is a powerful approach to study selective cell killing based on genotype. We show that loss of Rad52 function is synthetically lethal with breast cancer 2, early onset (BRCA2) deficiency, whereas there was no impact on cell growth and viability in BRCA2-complemented cells. The frequency of both spontaneous and double-strand break-induced homologous recombination and ionizing radiation-induced Rad51 foci decreased by 2-10 times when Rad52 was depleted in BRCA2-deficient cells, with little to no effect in BRCA2-complemented cells. The absence of both Rad52 and BRCA2 resulted in extensive chromosome aberrations, especially chromatid-type aberrations. Ionizing radiation-induced and S phase-associated Rad52-Rad51 foci form equally well in the presence or absence of BRCA2, indicating that Rad52 can respond to DNA double-strand breaks and replication stalling independently of BRCA2. Rad52 thus is an independent and alternative repair pathway of homologous recombination and a target for therapy in BRCA2-deficient cells.


Assuntos
Proteína BRCA2/genética , Regulação Neoplásica da Expressão Gênica , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Instabilidade Cromossômica , Aberrações Cromossômicas , Dano ao DNA , Teste de Complementação Genética , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
2.
Int J Oncol ; 34(6): 1491-503, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19424566

RESUMO

Cancer stem cells (CSCs) are rare tumor cells that have the potential to proliferate, self-renew and induce tumorigenesis. Over the past few years, CSCs have been isolated from several different tumors and when implanted into immune-deficient mice, generate tumors that are identical to the parental tumors. In this review, we summarize the current literature on CSCs, which suggests that since these cells have the ability to drive tumor formation, specifically targeting them may lead to more effective therapies against tumors.


Assuntos
Neoplasias/patologia , Neoplasias/prevenção & controle , Células-Tronco Neoplásicas/patologia , Animais , Transformação Celular Neoplásica , Humanos , Neoplasias/metabolismo
3.
Mol Biol Cell ; 19(7): 2926-35, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18463164

RESUMO

S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21(WAF1/CIP1) was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas S100/metabolismo , Apoptose , Ciclo Celular , Proliferação de Células , Dano ao DNA , Humanos , Queratinócitos/metabolismo , Microscopia Confocal , Proteômica/métodos , Recombinação Genética
4.
J Biol Chem ; 283(23): 15701-8, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18390547

RESUMO

The BLAP75 protein combines with the BLM helicase and topoisomerase (Topo) IIIalpha to form an evolutionarily conserved complex, termed the BTB complex, that functions to regulate homologous recombination. BLAP75 binds DNA, associates with both BLM and Topo IIIalpha, and enhances the ability of the BLM-Topo IIIalpha pair to branch migrate the Holliday junction (HJ) or dissolve the double Holliday junction (dHJ) structure to yield non-crossover recombinants. Here we seek to understand the relevance of the biochemical attributes of BLAP75 in HJ processing. With the use of a series of BLAP75 protein fragments, we show that the evolutionarily conserved N-terminal third of BLAP75 mediates complex formation with BLM and Topo IIIalpha and that the DNA binding activity resides in the C-terminal third of this novel protein. Interestingly, the N-terminal third of BLAP75 is just as adept as the full-length protein in the promotion of dHJ dissolution and HJ unwinding by BLM-Topo IIIalpha. Thus, the BLAP75 DNA binding activity is dispensable for the ability of the BTB complex to process the HJ in vitro. Lastly, we show that a BLAP75 point mutant (K166A), defective in Topo IIIalpha interaction, is unable to promote dHJ dissolution and HJ unwinding by BLM-Topo IIIalpha. This result provides proof that the functional integrity of the BTB complex is contingent upon the interaction of BLAP75 with Topo IIIalpha.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Cruciforme/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , DNA Helicases/química , DNA Helicases/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Cruciforme/química , DNA Cruciforme/genética , Proteínas de Ligação a DNA , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Mutação Puntual , RecQ Helicases
5.
Genes Dev ; 21(23): 3073-84, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18003859

RESUMO

Members of the RecQ helicase family play critical roles in genome maintenance. There are five RecQ homologs in mammals, and defects in three of these (BLM, WRN, and RECQL4) give rise to cancer predisposition syndromes in humans. RECQL and RECQL5 have not been associated with a human disease. Here we show that deletion of Recql5 in mice results in cancer susceptibility. Recql5-deficient cells exhibit elevated frequencies of spontaneous DNA double-strand breaks and homologous recombination (HR) as scored using a reporter that harbors a direct repeat, and are prone to gross chromosomal rearrangements in response to replication stress. To understand how RECQL5 regulates HR, we use purified proteins to demonstrate that human RECQL5 binds the Rad51 recombinase and inhibits Rad51-mediated D-loop formation. By biochemical means and electron microscopy, we show that RECQL5 displaces Rad51 from single-stranded DNA (ssDNA) in a reaction that requires ATP hydrolysis and RPA. Together, our results identify RECQL5 as an important tumor suppressor that may act by preventing inappropriate HR events via Rad51 presynaptic filament disruption.


Assuntos
Neoplasias Experimentais/prevenção & controle , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , Recombinação Genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Histonas/metabolismo , Humanos , Hidrólise , Perda de Heterozigosidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Mutação , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Rad51 Recombinase/genética , RecQ Helicases/deficiência , RecQ Helicases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Biol Chem ; 282(43): 31484-92, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17728255

RESUMO

BLM, the protein mutated in Bloom's syndrome, possesses a helicase activity that can dissociate DNA structures, including the Holliday junction, expected to arise during homologous recombination. BLM is stably associated with topoisomerase IIIalpha (Topo IIIalpha) and the BLAP75 protein. The BLM-Topo IIIalpha-BLAP75 (BTB) complex can efficiently resolve a DNA substrate that harbors two Holliday junctions (the double Holliday junction) in a non-crossover manner. Here we show that the Holliday junction unwinding activity of BLM is greatly enhanced as a result of its association with Topo IIIalpha and BLAP75. Enhancement of this BLM activity requires both Topo IIIalpha and BLAP75. Importantly, Topo IIIalpha cannot be substituted by Escherichia coli Top3, and the Holliday junction unwinding activity of BLM-related helicases WRN and RecQ is likewise impervious to Topo IIIalpha and BLAP75. However, the topoisomerase activity of Topo IIIalpha is dispensable for the enhancement of the DNA unwinding reaction. We have also ascertained the requirement for the BLM ATPase activity in double Holliday junction dissolution and DNA unwinding by constructing, purifying, and characterizing specific mutant variants that lack this activity. These results provide valuable information concerning how the functional integrity of the BTB complex is governed by specific protein-protein interactions among the components of this complex and the enzymatic activities of BLM and Topo IIIalpha.


Assuntos
Proteínas de Transporte/metabolismo , DNA Topoisomerases Tipo I/fisiologia , DNA Cruciforme/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA , Escherichia coli/metabolismo , Variação Genética , Histidina/química , Humanos , Hidrólise , Mutação , Ligação Proteica , RecQ Helicases , Recombinação Genética , Especificidade por Substrato
7.
J Cell Sci ; 119(Pt 24): 5137-46, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17118963

RESUMO

Werner syndrome (WS) is a rare genetic disorder characterized by genomic instability caused by defects in the WRN gene encoding a member of the human RecQ helicase family. RecQ helicases are involved in several DNA metabolic pathways including homologous recombination (HR) processes during repair of stalled replication forks. Following introduction of interstrand DNA crosslinks (ICL), WRN relocated from nucleoli to arrested replication forks in the nucleoplasm where it interacted with the HR protein RAD52. In this study, we use fluorescence resonance energy transfer (FRET) and immune-precipitation experiments to demonstrate that WRN participates in a multiprotein complex including RAD51, RAD54, RAD54B and ATR in cells where replication has been arrested by ICL. We verify the WRN-RAD51 and WRN-RAD54B direct interaction in vitro. Our data support a role for WRN also in the recombination step of ICL repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Ensaio de Imunoadsorção Enzimática , Exodesoxirribonucleases , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/efeitos dos fármacos , Rad51 Recombinase/genética , RecQ Helicases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Helicase da Síndrome de Werner
8.
J Biol Chem ; 281(20): 13861-4, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16595695

RESUMO

Bloom syndrome (BS), an autosomal recessive disorder, is marked by a high incidence of cancer early in life. Cells derived from BS patients are unstable genetically and exhibit frequent sister chromatid exchanges, reflective of homologous recombination (HR) deregulation. BLM, the RecQ-like helicase mutated in BS, is found in several cellular protein complexes, all of which contain topoisomerase IIIalpha (Topo IIIalpha) and a novel protein BLAP75. Here, using highly purified human proteins, we show that BLAP75 associates independently with both Topo IIIalpha and BLM. Even though BLM and Topo IIIalpha can dissolve the double Holliday junction (DHJ) to yield non-crossover recombinants (1), under physiological conditions, DHJ dissolution becomes completely dependent on BLAP75. The effect of BLAP75 on BLM-Topo IIIalpha is highly specific, as it is not seen with the combination of Topo IIIalpha and Escherichia coli RecQ helicase or another human RecQ-like helicase WRN. Thus, BLM, Topo IIIalpha, and BLAP75 constitute a dissolvasome complex that processes HR intermediates to limit DNA crossover formation. This function of the BLM-Topo IIIalpha-BLAP75 dissolvasome is likely indispensable for genome maintenance and cancer avoidance.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Transporte/fisiologia , DNA Helicases/fisiologia , DNA Topoisomerases Tipo I/fisiologia , Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA , Escherichia coli/metabolismo , Humanos , Modelos Biológicos , Modelos Genéticos , Mutação , Proteínas Nucleares , Ligação Proteica , RecQ Helicases , Recombinação Genética
9.
Mol Cell Biol ; 26(3): 976-89, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428451

RESUMO

Homologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryonic stem (ES) cells leads to a mild reduction in homologous recombination efficiency, the absence of Rad54B has little effect. However, the absence of both Rad54 and Rad54B dramatically reduces homologous recombination efficiency. Furthermore, we show that Rad54B protects ES cells from ionizing radiation and the interstrand DNA cross-linking agent mitomycin C. Interestingly, at the ES cell level the paralogs do not display an additive or synergic interaction with respect to mitomycin C sensitivity, yet animals lacking both Rad54 and Rad54B are dramatically sensitized to mitomycin C compared to either single mutant. This suggests that the paralogs possibly function in a tissue-specific manner. Finally, we show that Rad54, but not Rad54B, is needed for a normal distribution of Rad51 on meiotic chromosomes. Thus, even though the paralogs have similar biochemical properties, genetic analysis in mice uncovered their nonoverlapping roles.


Assuntos
Dano ao DNA , DNA Helicases/fisiologia , Reparo do DNA , Proteínas Nucleares/fisiologia , Recombinação Genética , Animais , Antibióticos Antineoplásicos/farmacologia , Aberrações Cromossômicas , Cromossomos/química , DNA Helicases/genética , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Meiose , Camundongos , Camundongos Mutantes , Mitomicina/farmacologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Rad51 Recombinase/análise , Rad51 Recombinase/metabolismo , Tolerância a Radiação/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Células-Tronco/efeitos da radiação
10.
DNA Repair (Amst) ; 5(2): 172-80, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16214424

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal recessive disorder characterized by growth deficiency, skin and skeletal abnormalities, and a predisposition to cancer. Mutations in the RECQ4 gene, one of five human homologs of the E. coli recQ gene, have been identified in a subset of RTS patients. Cells derived from RTS patients show high levels of chromosomal instability, implicating this protein in the maintenance of genomic integrity. However, RECQ4 is the least characterized of the RecQ helicase family with regard to its molecular and catalytic properties. We have expressed the human RECQ4 protein in E. coli and purified it to near homogeneity. We show that RECQ4 has an ATPase function that is activated by DNA, with ssDNA being much more effective than dsDNA in this regard. We have determined that a DNA length of 60 nucleotides is required to maximally activate ATP hydrolysis by RECQ4, while the minimal site size for ssDNA binding by RECQ4 is between 20 and 40 nucleotides. Interestingly, RECQ4 possesses a single-strand DNA annealing activity that is inhibited by the single-strand DNA binding protein RPA. Unlike the previously characterized members of the RecQ family, RECQ4 lacks a detectable DNA helicase activity.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Mutação , Síndrome de Rothmund-Thomson/genética , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sequência de Bases , DNA/química , DNA/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo I/metabolismo , DNA de Cadeia Simples/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Hidrólise , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Ligação Proteica , RecQ Helicases , Proteína de Replicação A/metabolismo , Fatores de Tempo
11.
Nature ; 429(6990): 433-7, 2004 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15164066

RESUMO

Homologous recombination is crucial for the repair of DNA breaks and maintenance of genome stability. In Escherichia coli, homologous recombination is dependent on the RecA protein. In the presence of ATP, RecA mediates the homologous DNA pairing and strand exchange reaction that links recombining DNA molecules. DNA joint formation is initiated through the nucleation of RecA onto single-stranded DNA (ssDNA) to form helical nucleoprotein filaments. Two RecA-like recombinases, Rad51 and Dmc1, exist in eukaryotes. Whereas Rad51 is needed for both mitotic and meiotic recombination events, the function of Dmc1 is restricted to meiosis. Here we examine human Dmc1 protein (hDmc1) for the ability to promote DNA strand exchange, and show that hDmc1 mediates strand exchange between paired DNA substrates over at least several thousand base pairs. DNA strand exchange requires ATP and is strongly dependent on the heterotrimeric ssDNA-binding molecule replication factor A (RPA). We present evidence that hDmc1-mediated DNA recombination initiates through the nucleation of hDmc1 onto ssDNA to form a helical nucleoprotein filament. The DNA strand exchange activity of hDmc1 is probably indispensable for repair of DNA double-strand breaks during meiosis and for maintaining the ploidy of meiotic chromosomes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Troca Genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Conformação de Ácido Nucleico , Proteínas de Ciclo Celular/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Microscopia Eletrônica , Proteína de Replicação A
12.
Brain Res ; 949(1-2): 88-96, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12213303

RESUMO

Experimental traumatic brain injury (TBI) results in a rapid and significant necrosis of cortical tissue at the site of injury. In the ensuing hours and days, secondary injury exacerbates the primary damage resulting in significant neurological dysfunction. The identification of cell death pathways that mediate this secondary traumatic injury have not been elucidated, however recent studies have implicated a role for apoptosis in the neuropathology of traumatic brain injury. The present study utilized a controlled cortical impact model of brain injury to assess the involvement of apoptotic pathways: release of cytochrome c from mitochondria and the activation of caspase-1- and caspase-3-like proteases in the injured cortex at 6, 12 and 24 h post-injury. Collectively, these results demonstrate cytochrome c release from mitochondria and its redistribution into the cytosol occurs in a time-dependent manner following TBI. The release of cytochrome c is accompanied by a time-dependent increase in caspase-3-like protease activity with no apparent increase in caspase-1-like activity. However, pretreatment with a general caspase inhibitor had no significant effect on the amount of cortical damage observed at 7 days post-injury. Our data suggest that several pro-apoptotic events occur following TBI, however the translocation of cytochrome c itself and/or other events upstream of caspase activation/inhibition may be sufficient to induce neuronal cell death.


Assuntos
Lesões Encefálicas/metabolismo , Caspases/metabolismo , Córtex Cerebral/metabolismo , Grupo dos Citocromos c/metabolismo , Análise de Variância , Animais , Western Blotting , Lesões Encefálicas/enzimologia , Inibidores de Caspase , Morte Celular , Córtex Cerebral/enzimologia , Ativação Enzimática , Técnicas Histológicas , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
13.
J Biol Chem ; 277(42): 40132-41, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12171935

RESUMO

In the yeast Saccharomyces cerevisiae, the RAD52 gene is indispensable for homologous recombination and DNA repair. Rad52 protein binds DNA, anneals complementary ssDNA strands, and self-associates to form multimeric complexes. Moreover, Rad52 physically interacts with the Rad51 recombinase and serves as a mediator in the Rad51-catalyzed DNA strand exchange reaction. Here, we examine the functional significance of the Rad51/Rad52 interaction. Through a series of deletions, we have identified residues 409-420 of Rad52 as being indispensable and likely sufficient for its interaction with Rad51. We have constructed a four-amino acid deletion mutation within this region of Rad52 to ablate its interaction with Rad51. We show that the rad52delta409-412 mutant protein is defective in the mediator function in vitro even though none of the other Rad52 activities, namely, DNA binding, ssDNA annealing, and protein oligomerization, are affected. We also show that the sensitivity of the rad52delta409-412 mutant to ionizing radiation can be complemented by overexpression of Rad51. These results thus demonstrate the significance of the Rad51-Rad52 interaction in homologous recombination.


Assuntos
Proteínas de Ligação a DNA/química , Recombinação Genética , Sequência de Aminoácidos , Cromatografia em Gel , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Poliacrilamida , Raios gama , Deleção de Genes , Glutationa Transferase/metabolismo , Kluyveromyces/metabolismo , Mitose , Dados de Sequência Molecular , Mutação , Fenótipo , Plasmídeos/metabolismo , Ligação Proteica , Rad51 Recombinase , Proteína Rad52 de Recombinação e Reparo de DNA , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...