Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(16): 164102, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319422

RESUMO

In recent years, several artificial molecular motors driven and controlled by electric currents have been proposed. Similar to Brownian machines, these systems work by turning random inelastic tunneling events into a directional rotation of the molecule. Despite their importance as the ultimate component of future molecular machines, their modeling has not been sufficiently studied. Here, we develop a dynamical model to describe these systems. We illustrate the validity and usefulness of our model by applying it to a well-known molecular motor, showing that the obtained results are consistent with the available experimental data. Moreover, we demonstrate how to use our model to extract some difficult-to-access microscopic parameters. Finally, we include an analysis of the expected effects of current-induced forces (CIFs). Our analysis suggests that, although nonconservative contributions of the CIFs can be important in some scenarios, they do not seem important in the analyzed case. Despite this, the conservative contributions of CIFs could be strong enough to significantly alter the system's dynamics.

2.
J Phys Condens Matter ; 33(17)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33530077

RESUMO

In recent years, there has been an increasing interest in nanoelectromechanical devices, current-driven quantum machines, and the mechanical effects of electric currents on nanoscale conductors. Here, we carry out a thorough study of the current-induced forces and the electronic friction of systems whose electronic effective Hamiltonian can be described by an archetypal model, a single energy level coupled to two reservoirs. Our results can help better understand the general conditions that maximize the performance of different devices modeled as a quantum dot coupled to two electronic reservoirs. Additionally, they can be useful to rationalize the role of current-induced forces in the mechanical deformation of one-dimensional conductors.

3.
J Phys Condens Matter ; 27(12): 125301, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25740978

RESUMO

We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.

4.
J Phys Condens Matter ; 26(34): 345304, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25105444

RESUMO

Decoherent transport in mesoscopic and nanoscopic systems can be formulated in terms of the D'Amato-Pastawski (DP) model. This generalizes the Landauer-Büttiker picture by considering a distribution of local decoherent processes. However, its generalization for multi-terminal set-ups is lacking. We first review the original two-terminal DP model for decoherent transport. Then, we extend it to a matrix formulation capable of dealing with multi-terminal problems. We also introduce recursive algorithms to evaluate the Green's functions for general banded Hamiltonians as well as local density of states, effective conductances and voltage profiles. We finally illustrate the method by analyzing two problems of current relevance. (1) Assessing the role of decoherence in a model for phonon lasers (SASER). (2) Obtaining the classical limit of giant magnetoresistance from a spin-dependent Hamiltonian. The presented methods should pave the way for computationally demanding calculations of transport through nanodevices, bridging the gap between fully coherent quantum schemes and semiclassical ones.

5.
J Chem Phys ; 127(15): 154305, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17949147

RESUMO

In this work we report a novel methodology that is able to predict how energy transfer transition probability density functions [P(E',E)] change with the maximum impact parameter (bmax) used in trajectory calculations (TC's). The method assumes that P(E',E) can be described by a sum of exponential functions and that all the trajectories with an initial impact parameter beyond a certain critical value will contribute only to the elastic peak [P(E',E) for E'=E]. This approach is applied to H2O-H2O collisions at different initial vibrational energies of the excited molecules and temperatures of bath gas. The results show that it is possible to reproduce with high accuracy the whole P(E',E) obtained from a given bmax, using the results of TC's performed at another bmax. The new methodology also leads us to propose a new criterion to choose the value of bmax.

6.
J Chem Phys ; 126(12): 124305, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17411121

RESUMO

The energy transfer process between highly vibrationally excited H(2)O in thermal equilibrium with a gas bath of H(2)O at different internal energies and temperatures has been studied by classical trajectory calculations. The results were analyzed using a cumulative probability distribution Q(DeltaE) of the amount of energy transferred, obtained by direct count of the number of trajectories that transfer an amount of energy equal to or greater than a certain value DeltaE. Scaling Q(DeltaE) in terms of the mean down and up energies transferred for each group of trajectories results in a unique distribution. This fact and the use of detailed balance constrains were used to propose a methodology that make it possible to build the whole P(E('),E) for any condition by knowing DeltaE and a series of parameters that depend only on the system under study.

7.
J Comput Chem ; 26(6): 523-31, 2005 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15726571

RESUMO

A stochastic method of optimization, which combines simulated annealing with simplex, is implemented to fit the parameters of a simple model potential. The main characteristic of the method is that it explores the whole space of the parameters of the model potential, and therefore it is very efficient in locating the global minimum of the cost function, in addition to being independent of the initial guess of the parameters. The method is employed to fit the complex intermolecular potential energy surface of the dimer of water, using as a reference the spectroscopic quality anisotropic site-site potential of Feller et al. The simple model potential chosen for its reparameterization is the MCY model potential of Clementi et al. The quality of the fit is assessed by comparing the geometry of the minimum, the harmonic frequencies, and the second virial coefficients of the parameterized potential with the reference one. Finally, to prove more rigorously the robustness of this method, it is compared with standard nonstochastic methods of optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...