Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(32): 34292-34302, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157080

RESUMO

Water pollution, driven by the discharge of dyes from industrial processes, poses a significant environmental and health hazard worldwide. Methylene blue, a common dye, constitutes particular concern due to its persistence and toxicity. Conventional wastewater treatment methods often struggle to effectively remove such contaminants. In this study, we introduce a novel approach utilizing a polysulfone-based composite membrane incorporating pretreated jute fibers and copper nanoparticles for the removal of methylene blue from aqueous solutions. The pretreated jute fibers undergo alkali and hydrogen peroxide treatments to enhance their adsorption capabilities, while copper nanoparticles are incorporated into the membrane to bolster its antimicrobial properties. Through comprehensive characterization techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and scanning electron microscopy (SEM), we confirm the structural and chemical properties of the composite membranes. Batch adsorption studies reveal the superior performance of the composite membrane compared with individual components. Specifically, at lower methylene blue concentrations (∼20 ppm), the composite membrane demonstrates a remarkable percent removal value of about 97%, while at higher concentrations (∼100 ppm), the percent removal remains substantial at 85%. Additionally, desorption studies elucidate the retention capacity of the adsorbed dye, indicating the feasibility of the composite membrane for practical applications in wastewater treatment. These findings underscore the potential of nanocomposite-fiber membranes as sustainable and cost-effective solutions for mitigating water pollution. By harnessing advancements in nanotechnology and materials science, the presented innovative composite membranes could offer promising avenues for addressing water pollution challenges and promoting environmental sustainability.

2.
Langmuir ; 40(4): 2311-2319, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232767

RESUMO

Memristor is assuming prominence due to its exceptionally low power consumption, adaptable, and parallel signal processing capabilities that address the limitations of the von Neumann architecture to meet the growing demand for advanced technologies such as artificial intelligence, Internet of Things (IoTs), and neuromorphic computation. In this work, we demonstrate resistive switching in copper silicate-based hollow tube-forming self-organized membrane structures belonging to the category of chemobrionics or chemical gardens to demonstrate cost-effective and highly efficient memristor devices. The device architecture is configured as ITO/PEDOT:PSS/active layer (copper silicate)/PMMA/Ag, an arrangement that serves to stabilize current-voltage hysteresis and exhibit a low SET voltage ∼0.2 V with a 0.8 nJ power consumption while manifesting robust data endurance and multilevel resistive switching. The inherent self-rectifying behavior, characterized by a high rectification ratio of 60, underscores the potential utility of these devices across a spectrum of electronic applications. To emulate the functionality of biological synapses, fundamental synaptic characteristics are assessed, including paired-pulse facilitation (PPF) and potentiation and depression (P&D). We validate the potential of copper silicate chemical garden-based memristor devices for applications that require real-time synaptic processing. Importantly, the fabrication of these devices was accomplished through a comprehensive solution-based, low-temperature process conducted under ambient environmental conditions, obviating the need for specialized glovebox facilities.

3.
Phys Chem Chem Phys ; 25(44): 30727-30734, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934461

RESUMO

Achieving control over growth kinetics in chemical garden architectures is challenging due to the nonequilibrium conditions. In this study, we demonstrate the vertical growth of silver tungstate chemical garden tubes under both illuminated and dark conditions, a phenomenon not observed in a comparable silver-based system, specifically silver silicate, under light exposure. Physicochemical factors, viz. thermo chemical radius of the tungstate anion, its density-buoyancy relation, the osmotic pressure gradient, and the hydration enthalpy, contributed to the tube appearance in silver tungstate even in light. Tubes grown in light illumination were greyish black, while dark-grown tubes were creamy white, and both tubes appeared twisted and highly intertwined. The colour of the as obtained silver tungstate tubes could be transformed via exposure to light. In the presence of a strong oxidizing agent, the growing tubes retain the original creamy white colour even under illumination. Colour transformation in chemical garden tubes has not yet been observed, and this report could lead the way.

4.
Chem Commun (Camb) ; 59(6): 768-771, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546324

RESUMO

The effect of the absence of light on chemical garden growth has been neglected although the gardens resemble hydrothermal vents that grow in dark in the sea/ocean. Herein, we report the differential growth of chemobrionic structures in copper silicate when identical reactions to yield copper silicate chemical gardens were carried out in the presence or absence of light. Irradiating the copper silicate chemical garden during its growth with different wavelengths of light independently resulted in morphologically divergent tubes.


Assuntos
Cobre , Silicatos , Silicatos/química
5.
Chem Commun (Camb) ; 58(26): 4172-4175, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35166752

RESUMO

The light sensitivity of many silver compounds has restricted the observation of silver-based chemical gardens. Here, we report for the first time, silver-based chemical gardens grown in the dark. An identical reaction kept in the light resulted in no such structures. We attribute the observation of silver-based chemobrionics to the avoidance of light.

6.
Langmuir ; 34(37): 10984-10992, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30157654

RESUMO

Amphiphilic block co-polymers are used to form large spherical vesicles. A sudden change in the osmotic pressure across the polymer membrane is used to induce the fission of the polymer vesicle. The membrane area to volume ratio, as expected, is observed to be a parameter suitable to describe the process and even mark the critical points along this transition. The effect of the length of the hydrophobic and hydrophilic chains on the fission process is analyzed. The effects of membrane lamellarity and initial polydispersity are thoroughly analyzed from the experimental data following mathematical models, and the phenomenon of fission in these polymer vesicles is understood via measurements characterizing the membrane, i.e., area stretch modulus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA