Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 120(48): 9612-9617, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27933919

RESUMO

In a recently reported helium droplet-mediated deposition experiment to produce copper-coated magnesium core-shell nanoclusters, structural inversion was observed, which resulted in copper in the nanocluster interior, surrounded by oxidized magnesium on the copper surface. This study utilizes density functional theory methods to model the migration of copper atoms into the interior of a magnesium nanocluster to probe the energetics of this process and to compare it to the complementary process of magnesium atom migration into the interior of a copper nanocluster. Potential energy surfaces describing the forced migration of copper (magnesium) atoms into the interior of a 30-atom magnesium (copper) cluster were generated using the B3PW91 hybrid generalized gradient approximation functional with the augmented correlation consistent core-valence polarized triple-ζ basis set for magnesium and a pseudopotential plus valence-only basis set for copper. The estimated barrier for atomic copper to penetrate the surface of Mg30 is 0.6 kcal mol-1. In contrast, the migration of atomic magnesium into the interior of Cu30 crosses an estimated barrier of 6 kcal mol-1. These results are qualitatively consistent with the observed structural inversion of copper-coated magnesium nanoclusters and also suggest that inversion of a magnesium-coated copper cluster is less likely to occur.

2.
J Phys Chem A ; 119(19): 4482-8, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25642913

RESUMO

Surface level ozone destruction in polar environments may be initiated by oxidation of bromide ions by ozone, ultimately leading to Br2 production. Ab initio calculations are used to support the development of atmospheric chemistry models, but errors can occur in study of the bromide-ozone reaction due to inappropriate treatment of the many-electron species and the ionic nature of the reaction. In this work, a high level ab initio study is used to take into account the electronic correlation and the polarization effects. Our results show three possible pathways for the reaction. In particular, we find that this process, though endothermic on the singlet spin state surface, can be energetically feasible on the triplet surface. The triplet surface can be reached through photoexcitation of ozone or by the spin crossing of the potential energy surface. Because this process is known to occur in the dark, it may be that it occurs after intersystem crossing to a triplet surface. This paper also provides a starting point calibration for any future ab initio calculation studies of the bromide-ozone reaction, from the gas to the condensed phase.


Assuntos
Brometos/química , Íons/química , Ozônio/química , Atmosfera/química , Elétrons , Gases/química , Modelos Químicos , Processos Fotoquímicos , Água/química
3.
Angew Chem Int Ed Engl ; 53(31): 8200-5, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25044947

RESUMO

Fluoride-azide exchange reactions of Me3SiN3 with MnF2 and MnF3 in acetonitrile resulted in the isolation of Mn(N3)2 and Mn(N3)3 ⋅CH3CN, respectively. While Mn(N3)2 forms [PPh4]2[Mn(N3)4] and (bipy)2Mn(N3)2 upon reaction with PPh4N3 and 2,2'-bipyridine (bipy), respectively, the manganese(III) azide undergoes disproportionation and forms mixtures of [PPh4]2[Mn(N3)4] and [PPh4]2[Mn(N3)6], as well as (bipy)2Mn(N3)2 and (bipy)Mn(N3)4. Neat and highly sensitive Cs2[Mn(N3)6] was obtained through the reaction of Cs2MnF6 with Me3SiN3 in CH3CN.

4.
J Phys Chem A ; 116(19): 4712-9, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22563978

RESUMO

Hydrochloric acid is a major reservoir for chlorine radicals in the atmosphere. Chlorine radicals are chemically reactivated by the relatively slow attack of OH radical on HCl. Through the formation of hydrogen-bonded complexes, water has a dramatic effect on the rate of this reaction. The introduction of water opens several new reaction pathways with rate coefficients that are faster than the "bare" reaction. Accounting for the low fraction of hydrogen bonded water complexes in the atmosphere, the present results suggest that these new mechanisms involving water can contribute, although modestly, to the total chemical reactivation of chlorine from HCl in the lower troposphere. The first reported value for the equilibrium constant for the formation of H(2)O·HCl complex, which is important in understanding the removal of HCl from the atmosphere by deposition, is presented.

5.
J Phys Chem A ; 116(24): 5821-9, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22455374

RESUMO

The effect of a single water molecule on the reaction between H(2)O(2) and HO has been investigated by employing MP2 and CCSD(T) theoretical approaches in connection with the aug-cc-PVDZ, aug-cc-PVTZ, and aug-cc-PVQZ basis sets and extrapolation to an ∞ basis set. The reaction without water has two elementary reaction paths that differ from each other in the orientation of the hydrogen atom of the hydroxyl radical moiety. Our computed rate constant, at 298 K, is 1.56 × 10(-12) cm(3) molecule(-1) s(-1), in excellent agreement with the suggested value by the NASA/JPL evaluation. The influence of water vapor has been investigated by considering either that H(2)O(2) first forms a complex with water that reacts with hydroxyl radical or that H(2)O(2) reacts with a previously formed H(2)O·OH complex. With the addition of water, the reaction mechanism becomes much more complex, yielding four different reaction paths. Two pathways do not undergo the oxidation reaction but an exchange reaction where there is an interchange between H(2)O(2)·H(2)O and H(2)O·OH complexes. The other two pathways oxidize H(2)O(2), with a computed total rate constant of 4.09 × 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 2.6 times the value of the rate constant of the unassisted reaction. However, the true effect of water vapor requires taking into account the concentration of the prereactive bimolecular complex, namely, H(2)O(2)·H(2)O. With this consideration, water can actually slow down the oxidation of H(2)O(2) by OH between 1840 and 20.5 times in the 240-425 K temperature range. This is an example that demonstrates how water could be a catalyst in an atmospheric reaction in the laboratory but is slow under atmospheric conditions.


Assuntos
Peróxido de Hidrogênio/química , Água/química , Radical Hidroxila/química
6.
J Am Chem Soc ; 133(10): 3345-53, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21319861

RESUMO

The effect of a single water molecule on the OH + HOCl reaction has been investigated. The naked reaction, the reaction without water, has two elementary reaction paths, depending on how the hydroxyl radical approaches the HOCl molecule. In both cases, the reaction begins with the formation of prereactive hydrogen bond complexes before the abstraction of the hydrogen by the hydroxyl radical. When water is added, the products of the reaction do not change, and the reaction becomes quite complex yielding six different reaction paths. Interestingly, a geometrical rearrangement occurs in the prereactive hydrogen bonded region, which prepares the HOCl moiety to react with the hydroxyl radical. The rate constant for the reaction without water is computed to be 2.2 × 10(-13) cm(3) molecule(-1) s(-1) at room temperature, which is in good agreement with experimental values. The reaction between ClOH···H(2)O and OH is estimated to be slower than the naked reaction by 4-5 orders of magnitude. Although, the reaction between ClOH and the H(2)O···HO complex is also predicted to be slower, it is up to 2.2 times faster than the naked reaction at altitudes below 6 km. Another intriguing finding of this work is an interesting three-body interchange reaction that can occur, that is HOCl + HO···H(2)O → HOCl···H(2)O + OH.

7.
J Am Chem Soc ; 133(7): 2013-5, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21275425

RESUMO

The catalytic ability of water, formic acid, and sulfuric acid to facilitate the isomerization of the CH(3)O radical to CH(2)OH has been studied. It is shown that the activation energies for isomerization are 30.2, 25.7, 4.2, and 2.3 kcal mol(-1), respectively, when the reaction is carried out in isolation and with water, formic acid, or sulfuric acid as a catalyst. The formation of a doubly hydrogen bonded transition state is central to lowering the activation energy and facilitating the intramolecular hydrogen atom transfer that is required for isomerization. The changes in the rate constant for the CH(3)O-to-CH(2)OH isomerization with acid catalysis have also been calculated at 298 K. The largest enhancement in the rate, by over 12 orders of magnitude, is with sulfuric acid. The results of the present study demonstrate the feasibility of acid catalysis of a gas-phase radical isomerization reaction that would otherwise be forbidden.

8.
J Phys Chem A ; 113(18): 5333-7, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19348491

RESUMO

CF(3)OH is an atmospheric sink for hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs). Several new mechanisms, including catalyzation via H(2)O and OH radical, for the decomposition of CF(3)OH into HF and CF(2)O are studied using ab inito methods. The present work demonstrates that the OH radical has a strong catalytic effect on the transition state for the decomposition of CF(3)OH. The barrier is found to be reduced from 45.9 kcal mol(-1) for the unimolecular decomposition to 11.0 kcal mol(-1) for decomposition including H(2)O and OH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...