Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(76): 10707-10710, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36069246

RESUMO

Chiral-imprinted mesoporous Pt-Ir alloy surfaces were combined in a synergetic way with electrochemiluminescence (ECL) to detect the two enantiomers of phenylalanine (PA) as a model compound, acting simultaneously as a chiral target and as a co-reactant to generate significant differences in ECL signals. The chiral features of the metal surfaces are converted into an enantioselective electrogeneration of the excited state of the [Ru(bpy)3]2+ dye, which in fine produces the differentiating light emission with up to 20-fold differences in intensity for the two enantiomers. These findings open up the possibility of developing new ECL-based bioassays and microscopy of chiral environments.


Assuntos
Medições Luminescentes , Fenilalanina , Técnicas Eletroquímicas , Estereoisomerismo
2.
Chem Sci ; 13(8): 2339-2346, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310499

RESUMO

In modern chemistry, chiral (electro)catalysis is a powerful strategy to produce enantiomerically pure compounds (EPC). However, it still struggles with uncontrollable stereochemistry due to side reactions, eventually producing a racemic mixture. To overcome this important challenge, a well-controlled design of chiral catalyst materials is mandatory to produce enantiomers with acceptable purity. In this context, we propose the synergetic combination of two strategies, namely the elaboration of mesoporous Pt films, imprinted with chiral recognition sites, together with the spatially controlled formation of a self-assembled monolayer. Chiral imprinted metals have been previously suggested as electrode materials for enantioselective recognition, separation and synthesis. However, the outermost surface of such electrodes is lacking chiral information and thus leads to unspecific reactions. Functionalising selectively this part of the electrode with a monolayer of organosulfur ligands allows an almost total suppression of undesired side reactions and thus leads to a boost of enantiomeric excess to values of over 90% when using these surfaces in the frame of enantioselective electrosynthesis. In addition, this strategy also decreases the total reaction time by one order of magnitude. The study therefore opens up promising perspectives for the development of heterogeneous enantioselective electrocatalysis strategies.

3.
Chem Asian J ; 16(21): 3345-3353, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34416087

RESUMO

The development of heterogeneous catalysts for asymmetric synthesis is one of the most challenging topics in chemistry, as it allows obtaining enantiomerically pure compounds. Recently, metal layers incorporating molecular chiral cavities, obtained by electroreduction of a metal source in the simultaneous presence of a non-ionic surfactant and asymmetric molecules, have been proposed for a wide range of applications, including enantioselective electroanalysis and electrosynthesis, as well as chiral separation. In contrast to this previous work, solely based on electrochemical phenomena, herein we designed and employed nanostructured chiral encoded Pt-Ir alloys, supported on high surface area nickel foams, as heterogeneous catalysts for the asymmetric hydrogenation of aromatic ketones. Fine-tuning the experimental conditions allows achieving very high enantioselectivity (>80%), combined with improved catalyst stability.

4.
Nat Commun ; 12(1): 1314, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637758

RESUMO

The design of efficient chiral catalysts is of crucial importance since it allows generating enantiomerically pure compounds. Tremendous efforts have been made over the past decades regarding the development of materials with enantioselective properties for various potential applications ranging from sensing to catalysis and separation. Recently, chiral features have been generated in mesoporous metals. Although these monometallic matrices show interesting enantioselectivity, they suffer from rather low stability, constituting an important roadblock for applications. Here, a straightforward strategy to circumvent this limitation by using nanostructured platinum-iridium alloys is presented. These materials can be successfully encoded with chiral information by co-electrodeposition from Pt and Ir salts in the simultaneous presence of a chiral compound and a lyotropic liquid crystal as asymmetric template and mesoporogen, respectively. The alloys enable a remarkable discrimination between chiral compounds and greatly improved enantioselectivity when used for asymmetric electrosynthesis (>95 %ee), combined with high electrochemical stability.

5.
ACS Appl Mater Interfaces ; 12(32): 36548-36557, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32683858

RESUMO

The development of surfaces with chiral features is a fascinating challenge for modern materials science, especially when they are used for chiral separation technologies. In this contribution, the design of hierarchically structured chiral macroporous zeolitic imidazolate framework-8 (ZIF-8) electrodes is presented. They are elaborated by an electrochemical deposition-dissolution technique based on the electrodeposition of metal through a colloidal crystal template, followed by controlled electrooxidation. This generates locally metal cations, which can interact with a chiral ligand present in the solution to form metal-organic frameworks (MOFs). The macroporous structure facilitates the access of the chiral recognition sites, located in the mesoporous MOF, and thus helps to overcome mass transport limitations. The efficiency of the designed functional materials for chiral adsorption and separation can be fine-tuned by applying an adjustable electric potential to the electrode surfaces. This hierarchical chiral ZIF-8 structure was deposited at the walls of a microfluidic device and used as a stationary phase for enantioselective separation. The potential-controlled interaction between the stationary phase and the chiral analytes allows baseline separation of two enantiomers. This opens up interesting perspectives for using hierarchically structured chiral MOFs as an efficient material for the selective adsorption and separation of chiral compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...