Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892100

RESUMO

The tick-borne encephalitis virus (TBEV) is one of the most common members of the Orthoflavivirus genus, which comprises the causative agents of severe diseases in humans and animals. Due to the expanding areas of orthoflavivirus infection, its differential diagnosis is highly demanded. Commercial test kits based on inactivated TBEV may not provide reliable differentiation between flaviviruses because of serological crossover in this genus. Application of recombinant domains (sE and dIII) of the TBEV Sukhar-strain protein E as antigens in an ELISA test system allowed us to identify a wide range of antibodies specific to different TBEV strains. We tested 53 sera from human patients with confirmed TBE diagnosis (the efficacy of our test system based on sE protein was 98%) and 56 sera from patients with other orthoflavivirus infections in which no positive ones were detected using our ELISA test system, thus being indicative of its 100% specificity. We also tested mouse and rabbit sera containing antibodies specific to 17 TBEV strains belonging to different subtypes; this assay exhibited high efficacy and differentiation ability in detecting antibodies against TBEV from other orthoflaviviruses such as Omsk hemorrhagic fever, Powassan, yellow fever, dengue, West Nile, Zika, and Japanese encephalitis viruses.

2.
Heliyon ; 9(8): e18973, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609427

RESUMO

Seed damage caused by screw working bodies of agricultural machines reduces the seed quality and increases the total cost of crop production. This paper describes the impact interaction of a particle with screw flights when seeds are fed into the transportation zone. There are velocity dependences during the impact and reflection of seeds on the screw surface at the maximum distance of the radius from the screw rotation axis. The potential energy lost by seeds when interacting with screw flights is determined. The paper considers the way transporting the seed material by screw working bodies impacts seed damage. The potential energy accumulated after impact by the reflecting surface and the particle depends on the magnitude and direction of the falling velocity to the screw belt, the auger geometric and kinematic parameters (the screw diameter; the inclination angle of the helix to the screw axis and the angular velocity), as well as the physical and mechanical properties of the particle and the reflecting surface (recovery and friction coefficients). Previous studies have shown that the critical angular velocity of the screw flight depends on the screw casing and the reduction factor of the circumferential velocity. In turn, the reduction factor depends on the transported seed material and the geometric parameters of the screw. It is possible to diminish the destruction of the seed material due to impact interaction with the working surface of the screw by reducing the inclination angle of the screw flight α, the angular speed of the screw rotation ω and its radius R. It also requires direct the seed flow closer to the rotation center. Reducing injury to seeds during transportation in a screw device requires a higher critical angular velocity of the screw. To increase the working angular velocity of the screw without exceeding its threshold of critical angular velocity, it is advisable to use screws with a large pitch and polymer screws with a wider pitch.

3.
Small ; 19(39): e2301637, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259270

RESUMO

Oil-in-water emulsion droplets spontaneously adopt, below some temperature Td , counterintuitive faceted and complex non-spherical shapes while remaining liquid. This transition is driven by a crystalline monolayer formed at the droplets' surface. Here, we show that ppm-level doping of the droplet's bulk by long-chain alcohols allows tuning Td by >50 °C, implying formation of drastically different interfacial structures. Furthermore, "magic" alcohol chain lengths maximize Td . This we show to arise from self-assembly of mixed alcohol:alkane interfacial structures of stacked alkane layers, co-crystallized with hydrogen-bonded alcohol dimers. These structures are accounted for theoretically and resolved by direct cryogenic transmission electron microscopy (cryoTEM), confirming the proposed structures. The discovered tunability of key properties of commonly-used emulsions by minute concentrations of specific bulk additives should benefit these emulsions' technological applicability.

4.
PLoS One ; 18(5): e0284823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163522

RESUMO

Tick-borne encephalitis virus (TBEV) is one of the most threatening pathogens which affects the human central nervous system (CNS). TBEV circulates widely in Northern Eurasia. According to ECDC, the number of TBE cases increase annually. There is no specific treatment for the TBEV infection, thus vaccination is the main preventive measure. Despite the existence of several inactivated vaccines currently being licensed, the development of new TBEV vaccines remains a leading priority in countries endemic to this pathogen. Here we report new recombinant virus made by infectious subgenomic amplicon (ISA) approach using TBEV and yellow fever virus vaccine strain (YF17DD-UN) as a genetic backbone. The recombinant virus is capable of effective replication in mammalian cells and induce TBEV-neutralizing antibodies in mice. Unlike the original vector based on the yellow fever vaccine strain, chimeric virus became neuroinvasive in doses of 107-106 PFU and can be used as a model of flavivirus neuroinvasiveness, neurotropism and neurovirulence. These properties of hybrid structures are the main factors limiting their practical use as vaccines platforms.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas Virais , Vacina contra Febre Amarela , Humanos , Animais , Camundongos , Vacina contra Febre Amarela/genética , Vírus da Febre Amarela/genética , Mamíferos
5.
J Colloid Interface Sci ; 621: 131-138, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35487043

RESUMO

HYPOTHESIS: The counterintuitive temperature-controlled self-faceting of water-suspended, surfactant-stabilized, liquid oil droplets provides new opportunities in engineering of smart liquids, the properties of which are controllable by external stimuli. However, many emulsions exhibiting self-faceting phenomena have limited stability due to surfactant precipitation. The emulsions' stability may be enhanced, and their inter-droplet electrostatic repulsion tuned, through controlled charge screening driven by varying-concentration added salts. Moreover, in many technologically-relevant situations, salts may already exist in the emulsion's aqueous phase. Yet, salts' impact on self-faceting effects has never been explored. We hypothesize that the self-faceting transitions' temperatures, and stability against surfactant precipitation, of ionic-surfactants-stabilized emulsions are significantly modified by salt introduction. EXPERIMENTS: We explore the temperature-dependent impact of NaCl and CsCl salt concentration on the emulsions' phase diagrams, employing optical microscopy of emulsion droplet shapes and interfacial tension measurements, both sensitive to interfacial phase transitions. FINDINGS: A salt concentration dependent increase in the self-faceting transition temperatures is found, and its mechanism elucidated. Our findings allow for a significant enhancement of the emulsions' stability, and provide the physical understanding necessary for future progress in research and applications of self-faceting phenomena in salt-containing emulsions.


Assuntos
Sais , Cloreto de Sódio , Emulsões , Tensoativos , Água
6.
J Phys Chem Lett ; 12(29): 6834-6839, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279944

RESUMO

While the curvature of the classical liquid surfaces exhibits only a weak temperature dependence, we demonstrate here a reversible temperature-tunable concave-convex shape switching in capillary-contained, surfactant-decorated, oil-water interfaces. The observed switching gives rise to a concave-convex shape transition, which takes place as a function of the width of the containing capillary. This apparent violation of Young's equation results from a hitherto-unreported sharp reversible hydrophobic-hydrophilic transition of the glass capillary walls. The transition is driven by the interfacial freezing effect, which controls the balance between the competing surfactants' adsorption on, and consequent hydrophobization of, the capillary walls and their incorporation into the interfacially frozen monolayer. Since capillary wetting by surfactant solutions is fundamental for a wide range of technologies and natural phenomena, the present observations have important implications in many fields, from fluid engineering to biology, and beyond.

7.
Infect Genet Evol ; 88: 104711, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421655

RESUMO

The Astrakhan region of Russia is endemic for the number of arboviruses. In this paper, we describe the results of the detection of the list of neglected arboviruses in the Astrakhan region for the 2018 season. For the purpose of the study in-house PCR assays for detection of 18 arboviruses have been developed and validated using arboviruses obtained from Russian State Collection of Viruses. Pools of ticks (n = 463) and mosquitoes (n = 312) as well as 420 samples of human patients sera have been collected and analyzed. Using developed multiplex real-time PCR assays we were able to detect RNA of eight arboviruses (Crimean-Congo hemorrhagic fever virus, Dhori (Batken strain) virus, Batai virus, Tahyna virus, Uukuniemi virus, Inkoo virus, Sindbis virus and West Nile fever virus). All discovered viruses are capable of infecting humans causing fever and in some cases severe forms with hemorrhagic or neurologic symptoms. From PCR-positive samples, we were able to recover one isolate each of Dhori (Batken strain) virus and Crimean-Congo hemorrhagic fever virus which were further characterized by next-generation sequencing. The genomic sequences of identified Dhori (Batken strain) virus strain represent the most complete genome of Batken virus strain among previously reported.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus/classificação , Arbovírus/genética , Culicidae/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Thogotovirus/genética , Carrapatos/virologia , Animais , Arbovírus/isolamento & purificação , Vírus Bunyamwera/classificação , Vírus Bunyamwera/genética , Vírus da Encefalite da Califórnia/classificação , Vírus da Encefalite da Califórnia/genética , Genoma Viral , Vírus da Febre Hemorrágica da Crimeia-Congo/classificação , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Patologia Molecular/métodos , Filogenia , RNA Viral , Federação Russa/epidemiologia , Sindbis virus/classificação , Sindbis virus/genética , Thogotovirus/classificação , Thogotovirus/isolamento & purificação , Vírus Uukuniemi/classificação , Vírus Uukuniemi/genética , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/genética
8.
Infect Genet Evol ; 85: 104524, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32891876

RESUMO

Phlebovirus is an abundant and rather heterogeneous genus within the Phenuiviridae family (order Bunyavirales). The genus Phlebovirus is divided into two antigenic complexes, which also correspond to the main vector: sandflies/mosquitoes and ticks. Previously, only sandfly/mosquito-borne phleboviruses were associated with human disease, such as Rift Valley fever virus, Toscana virus, Sicilian and Naples Sandfly fever viruses and others. Until recently, tick-borne phleboviruses were not considered as human pathogens. After the discovery of severe fever with thrombocytopenia syndrome, interest to tick-borne phleboviruses has increased dramatically. In the last decade, many novel phleboviruses have been reported in different regions. Despite this, the diversity, ecology and pathogenicity of these viruses still remain obscure. The aim of this work was to study the diversity of phleboviruses in ticks collected in several regions of Russia. We used pan-phlebovirus RT-PCR assays based on multiple degenerate primers targeting the polymerase gene fragment. Arthropod specimens were collected from 2005 to 2018. A total of 5901 Ixodidae ticks combined into 1116 pools were screened. A total of 160 specific amplicons were produced. In three cases RT-PCR assays amplified two distinct viruses from same tick pools. Direct sequencing of amplicons and subsequent phylogenetic analysis revealed twelve representatives of divergent phlebovirus groups. Based on the distribution of pairwise nucleotide sequence identity values, a cut-off (88%) was suggested to distinguish tick-borne phleboviruses. According to this provisional criterion, two viruses found here could be termed novel, while ten viruses have been described in previous studies. Detected phleboviruses demonstrated almost perfect specificity to a tick species or, at least, a genus. The same pattern was observed for tick-borne phleboviruses found in different studies around the world. Viruses that grouped together on a phylogenetic tree and differed less than this sequence identity threshold suggested above were hosted by ticks from the same genus.


Assuntos
Febre por Flebótomos/genética , Phlebovirus/classificação , Phlebovirus/genética , Filogenia , Especificidade da Espécie , Doenças Transmitidas por Carrapatos/genética , Carrapatos/virologia , Animais , Variação Genética , Genótipo , Febre por Flebótomos/epidemiologia , Federação Russa , Análise de Sequência , Doenças Transmitidas por Carrapatos/epidemiologia
9.
J Am Chem Soc ; 142(19): 8672-8678, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32307985

RESUMO

While classical liquid droplets are rounded, transitions have recently been discovered which render polyhedral water-suspended droplets of several oils. Yet, the mechanism of these transitions and the role of the droplets' interfacial curvature in inducing these transitions remain controversial. In particular, one of the two mechanisms suggested mandates a convex interface, in a view from the oil side. Here we show that oil-suspended water droplets can spontaneously assume polyhedral shapes, in spite of their concave interface. These results strongly support the alternative mechanism, where the faceting in both oil and water droplets is driven by the elasticity of a crystalline monolayer, known to self-assemble at the oil-water interface, independent of its curvature. The faceting transitions in the water droplets allow the fundamental elastic properties of two-dimensional matter to be probed, enable new strategies in faceted nanoparticle and nanoshell synthesis, and provide insight into the molecular mechanisms of morphogenesis.

10.
Langmuir ; 35(40): 13053-13061, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31502850

RESUMO

Decorating emulsion droplets by particles stabilizes foodstuff and pharmaceuticals. Interfacial particles also influence aerosol formation, thus impacting atmospheric CO2 exchange. While studies of particles at disordered droplet interfaces abound in the literature, such studies for ubiquitous ordered interfaces are not available. Here, we report such an experimental study, showing that particles residing at crystalline interfaces of liquid droplets spontaneously self-position to specific surface locations, identified as structural topological defects in the crystalline surface monolayer. This monolayer forms at temperature T = Ts, leaving the droplet liquid and driving at Td < Ts a spontaneous shape-change transition of the droplet from spherical to icosahedral. The particle's surface position remains unchanged in the transition, demonstrating these positions to coincide with the vertices of the sphere-inscribed icosahedron. Upon further cooling, droplet shape-changes to other polyhedra occur, with the particles remaining invariably at the polyhedra's vertices. At still lower temperatures, the particles are spontaneously expelled from the droplets. Our results probe the molecular-scale elasticity of quasi-two-dimensional curved crystals, impacting also other fields, such as protein positioning on cell membranes, controlling essential biological functions. Using ligand-decorated particles, and the precise temperature-tunable surface position control found here, may also allow using these droplets for directed supra-droplet self-assembly into larger structures, with a possible post-assembly structure fixation by UV polymerization of the droplet's liquid.

11.
Soft Matter ; 15(26): 5227-5233, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31225580

RESUMO

The intermittent 'stick-slip' dynamics in frictional sliding of solid bodies is common in everyday life and technology. This dynamics has been widely studied on a macroscopic scale, where the thermal motion can usually be neglected. However, the microscopic mechanisms behind the periodic stick-slip events are yet unclear. We employ confocal microscopy of colloidal spheres, to study the frictional dynamics at the boundary between two quasi-two-dimensional (2D) crystalline grains, with a single particle resolution. Such unprecedentedly-detailed observations of the microscopic-scale frictional solid-on-solid sliding have never been previously carried out. At this scale, the particles undergo an intense thermal motion, which masks the avalanche-like nature of the underlying frictional dynamics. We demonstrate that the underlying sliding dynamics involving out-of-plane buckling events, is intermittent and periodic, like in macroscopic friction. However, unlike in the common models of friction, the observed periodic frictional dynamics is promoted, rather than just suppressed, by the thermal noise, which maximizes the entropy of the system.

12.
Arch Virol ; 163(3): 755-759, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29129019

RESUMO

A genome of bank vole virus (BaVV), isolated from kidney tissues of bank voles (Myodes glareolus) in Russia in 1973, was sequenced. The genomic organization of BaVV (3'-N-P/V/C-M-F-G-L-5', 16,992 nt in length; GenBank accession number MF943130) is most similar to that of Mossman virus (MoV) and Nariva virus (NarPV), two ungrouped paramyxoviruses isolated from rodents in Australia and Trinidad, respectively. The proteins of BaVV have the highest level of sequence identity (ranging from 23-28% for G protein to 66-73% for M protein) to proteins of MoV and NarPV. The results of genetic and phylogenetic analysis suggest that BaVV represents a new species and, together with MoV and NarPV, belongs to a new, yet not established genus of the family Paramyxoviridae.


Assuntos
Arvicolinae/virologia , Genoma Viral , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae/genética , RNA Viral/genética , Doenças dos Roedores/epidemiologia , Animais , Sequência de Bases , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Rim/virologia , Paramyxoviridae/classificação , Paramyxoviridae/isolamento & purificação , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Filogenia , Doenças dos Roedores/virologia , Federação Russa/epidemiologia , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico
13.
Langmuir ; 33(46): 13343-13349, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29043816

RESUMO

Confocal microscopy is widely used for three-dimensional (3D) sample reconstructions. Arguably, the most significant challenge in such reconstructions is posed by the resolution along the optical axis being significantly lower than in the lateral directions. In addition, the imaging rate is lower along the optical axis in most confocal architectures, prohibiting reliable 3D reconstruction of dynamic samples. Here, we demonstrate a very simple, cheap, and generic method of multiangle microscopy, allowing high-resolution high-rate confocal slice collection to be carried out with capillary-contained colloidal samples in a wide range of slice orientations. This method, realizable with any common confocal architecture and recently implemented with macroscopic specimens enclosed in rotatable cylindrical capillaries, allows 3D reconstructions of colloidal structures to be verified by direct experiments and provides a solid testing ground for complex reconstruction algorithms. In this paper, we focus on the implementation of this method for dense nonrotatable colloidal samples, contained in complex-shaped capillaries. Additionally, we discuss strategies to minimize potential pitfalls of this method, such as the artificial appearance of chain-like particle structures.

14.
Sci Rep ; 6: 28578, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346611

RESUMO

Spherical colloids, in an absence of external fields, are commonly assumed to interact solely through rotationally-invariant potentials, u(r). While the presence of permanent dipoles in aqueous suspensions has been previously suggested by some experiments, the rotational degrees of freedom of spherical colloids are typically neglected. We prove, by direct experiments, the presence of permanent dipoles in commonly used spherical poly(methyl methacrylate) (PMMA) colloids, suspended in an apolar organic medium. We study, by a combination of direct confocal microscopy, computer simulations, and theory, the structure and other thermodynamical properties of organic suspensions of colloidal spheres, confined to a two-dimensional (2D) monolayer. Our studies reveal the effects of the dipolar interactions on the structure and the osmotic pressure of these fluids. These observations have far-reaching consequences for the fundamental colloidal science, opening new directions in self-assembly of complex colloidal clusters.

15.
J Virol Methods ; 232: 29-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947398

RESUMO

This study reports the pan-phlebovirus assay capable of detecting both sandfly/mosquito- and tick-borne phleboviruses. Sensitivity and specificity of the assay was verified using a panel of arboviruses. The RT-PCR assay is simple and sensitive, and thus well suited for screening of field samples.


Assuntos
Infecções por Bunyaviridae/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Phlebovirus/classificação , Phlebovirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Virologia/métodos , Infecções por Bunyaviridae/virologia , Humanos , Phlebovirus/genética , Sensibilidade e Especificidade
16.
Proc Natl Acad Sci U S A ; 113(3): 493-6, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733673

RESUMO

Liquid droplets, widely encountered in everyday life, have no flat facets. Here we show that water-dispersed oil droplets can be reversibly temperature-tuned to icosahedral and other faceted shapes, hitherto unreported for liquid droplets. These shape changes are shown to originate in the interplay between interfacial tension and the elasticity of the droplet's 2-nm-thick interfacial monolayer, which crystallizes at some T = Ts above the oil's melting point, with the droplet's bulk remaining liquid. Strikingly, at still-lower temperatures, this interfacial freezing (IF) effect also causes droplets to deform, split, and grow tails. Our findings provide deep insights into molecular-scale elasticity and allow formation of emulsions of tunable stability for directed self-assembly of complex-shaped particles and other future technologies.

17.
Soft Matter ; 10(27): 4913-21, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24870013

RESUMO

Granular matter, where solid-like elasticity emerges in the absence of crystalline order, has been actively studied over the last few decades, targeting fundamental physical understanding of granular packings and glasses, abundant in everyday life and technology. We employ charge-stabilized sub-micron particles in a solvent, known as colloids, to form granular packings through a well-controlled process, where initially homogeneous and thermodynamically equilibrated colloidal fluids form solid sediments, when subjected to an effective gravity in a centrifuge. We demonstrate that particles' volume fraction φj in these sediments increases linearly with that in the initial fluid φ0, setting an upper limit φRCP≈ 0.64 on both φj and φ0, where φRCP coincides with the well-known, yet highly controversial, 'random close packing' density of spheres, providing new insight into the physics of granular packings. The observed φj(φ0) dependence is similar to the one recently reported for colloidal hard spheres, sterically stabilized by surface-linked polymer combs (S. R. Liber, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 5769-5773). However, the lower limit on sediment densities drops to φj≈ 0.49 in the present work, suggesting that sedimented charge-stabilized silica are able to overcome mutual electrostatic repulsions, forming gel-like structures stabilized by occasional van der Waals contacts. Finally, by introducing particle size polydispersity, which significantly modifies fluid structure and sedimentation dynamics, we almost completely diminish the φj(φ0) dependence, bringing φj(0) close to its value in frictionless systems.

18.
Proc Natl Acad Sci U S A ; 110(15): 5769-73, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530198

RESUMO

We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, ϕRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, ϕRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed.

19.
Opt Express ; 21(25): 30755-63, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514652

RESUMO

Computerized image-analysis routines deployed widely to locate and track the positions of particles in microscope images include several steps where images are convolved with kernels to remove noise. In many common implementations, some kernels are rotationally asymmetric. Here we show that the use of these asymmetric kernels creates significant artifacts, distorting apparent particle positions in a way that gives the artificial appearance of orientational crystalline order, even in such fully-disordered isotropic systems as simple fluids of hard-sphere-like colloids. We rectify this problem by replacing all asymmetric kernels with rotationally-symmetric kernels, which does not impact code performance. We show that these corrected codes locate particle positions properly, restoring measured isotropy to colloidal fluids. We also investigate rapidly-formed colloidal sediments, and with the corrected codes show that these sediments, often thought to be amorphous, may exhibit strong orientational correlations among bonds between neighboring colloidal particles.


Assuntos
Rastreamento de Células/métodos , Coloides/química , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Rotação
20.
Langmuir ; 28(36): 12941-7, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22891749

RESUMO

We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.


Assuntos
Leptospira interrogans/fisiologia , Movimento , Difusão , Leptospira interrogans/química , Microscopia Confocal , Modelos Químicos , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA