Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 10(1): 138, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36038937

RESUMO

BACKGROUND: Plant floral nectars contain natural sugars such as fructose, which are a primary energy resource for adult mosquitoes. Despite the importance of carbohydrates for mosquito metabolism, a limited knowledge is available about the pathways involved in sugar assimilation by mosquitoes and their associated microbiota. To this end, we used 13C-metabolomic and stable isotope probing approaches coupled to high-throughput sequencing to reveal fructose-related mosquito metabolic pathways and the dynamics of the active gut microbiota following fructose ingestion. RESULTS: Our results revealed significant differences in metabolic pathways between males and females, highlighting different modes of central carbon metabolism regulation. Competitive and synergistic interactions of diverse fungal taxa were identified within the active mycobiota following fructose ingestion. In addition, we identified potential cross-feeding interactions between this. Interestingly, there is a strong correlation between several active fungal taxa and the presence of fructose-derived metabolites. CONCLUSIONS: Altogether, our results provide novel insights into mosquito carbohydrate metabolism and demonstrate that dietary fructose as it relates to mosquito sex is an important determinant of mosquito metabolism; our results also further highlight the key role of active mycobiota interactions in regulating the process of fructose assimilation in mosquitoes. This study opens new avenues for future research on mosquito-microbiota trophic interactions related to plant nectar-derived sugars. Video abstract.


Assuntos
Aedes , Microbioma Gastrointestinal , Microbiota , Animais , Metabolismo dos Carboidratos , Feminino , Frutose , Masculino
2.
Metabolomics ; 18(7): 41, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35713733

RESUMO

INTRODUCTION: Stable isotope tracer studies are increasingly applied to explore metabolism from the detailed analysis of tracer incorporation into metabolites. Untargeted LC/MS approaches have recently emerged and provide potent methods for expanding the dimension and complexity of the metabolic networks that can be investigated. A number of software tools have been developed to process the highly complex MS data collected in such studies; however, a method to optimize the extraction of valuable isotopic data is lacking. OBJECTIVES: To develop and validate a method to optimize automated data processing for untargeted MS-based isotopic tracing investigations of metabolism. METHODS: The method is based on the application of a suitable reference material to rationally perform parameter optimization throughout the complete data processing workflow. It was applied in the context of 13C-labelling experiments and with two different software, namely geoRge and X13CMS. It was illustrated with the study of a E. coli mutant impaired for central metabolism. RESULTS: The optimization methodology provided significant gain in the number and quality of extracted isotopic data, independently of the software considered. Pascal triangle samples are well suited for such purpose since they allow both the identification of analytical issues and optimization of data processing at the same time. CONCLUSION: The proposed method maximizes the biological value of untargeted MS-based isotopic tracing investigations by revealing the full metabolic information that is encoded in the labelling patterns of metabolites.


Assuntos
Escherichia coli , Metabolômica , Cromatografia Líquida/métodos , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
3.
Metabolites ; 11(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926117

RESUMO

We have developed a robust workflow to measure high-resolution fluxotypes (metabolic flux phenotypes) for large strain libraries under fully controlled growth conditions. This was achieved by optimizing and automating the whole high-throughput fluxomics process and integrating all relevant software tools. This workflow allowed us to obtain highly detailed maps of carbon fluxes in the central carbon metabolism in a fully automated manner. It was applied to investigate the glucose fluxotypes of 180 Escherichia coli strains deleted for y-genes. Since the products of these y-genes potentially play a role in a variety of metabolic processes, the experiments were designed to be agnostic as to their potential metabolic impact. The obtained data highlight the robustness of E. coli's central metabolism to y-gene deletion. For two y-genes, deletion resulted in significant changes in carbon and energy fluxes, demonstrating the involvement of the corresponding y-gene products in metabolic function or regulation. This work also introduces novel metrics to measure the actual scope and quality of high-throughput fluxomics investigations.

5.
J Hepatol ; 72(4): 688-701, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31778751

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF), which develops in patients with cirrhosis, is characterized by intense systemic inflammation and organ failure(s). Because systemic inflammation is energetically expensive, its metabolic costs may result in organ dysfunction/failure. Therefore, we aimed to analyze the blood metabolome in patients with cirrhosis, with and without ACLF. METHODS: We performed untargeted metabolomics using liquid chromatography coupled to high-resolution mass spectrometry in serum from 650 patients with AD (acute decompensation of cirrhosis, without ACLF), 181 with ACLF, 43 with compensated cirrhosis, and 29 healthy individuals. RESULTS: Of the 137 annotated metabolites identified, 100 were increased in patients with ACLF of any grade, relative to those with AD, and 38 comprised a distinctive blood metabolite fingerprint for ACLF. Among patients with ACLF, the intensity of the fingerprint increased across ACLF grades, and was similar in patients with kidney failure and in those without, indicating that the fingerprint reflected not only decreased kidney excretion but also altered cell metabolism. The higher the ACLF-associated fingerprint intensity, the higher the plasma levels of inflammatory markers, tumor necrosis factor α, soluble CD206, and soluble CD163. ACLF was characterized by intense proteolysis and lipolysis; amino acid catabolism; extra-mitochondrial glucose metabolism through glycolysis, pentose phosphate, and D-glucuronate pathways; depressed mitochondrial ATP-producing fatty acid ß-oxidation; and extra-mitochondrial amino acid metabolism giving rise to metabotoxins. CONCLUSIONS: In ACLF, intense systemic inflammation is associated with blood metabolite accumulation and profound alterations in major metabolic pathways, in particular inhibition of mitochondrial energy production, which may contribute to the development of organ failures. LAY SUMMARY: Acute-on-chronic liver failure (ACLF), which develops in patients with cirrhosis, is characterized by intense systemic inflammation and organ failure(s). Because systemic inflammation is energetically expensive, its metabolic costs may result in organ dysfunction/failure. We identified a 38-metabolite blood fingerprint specific for ACLF that revealed mitochondrial dysfunction in peripheral organs. This may contribute to organ failures.


Assuntos
Insuficiência Hepática Crônica Agudizada/sangue , Insuficiência Hepática Crônica Agudizada/complicações , Glicólise , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Metaboloma , Metabolômica/métodos , Mitocôndrias/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença
6.
Hepatology ; 69(4): 1686-1701, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521097

RESUMO

Systemic inflammation (SI) is involved in the pathogenesis of acute decompensation (AD) and acute-on-chronic liver failure (ACLF) in cirrhosis. In other diseases, SI activates tryptophan (Trp) degradation through the kynurenine pathway (KP), giving rise to metabolites that contribute to multiorgan/system damage and immunosuppression. In the current study, we aimed to characterize the KP in patients with cirrhosis, in whom this pathway is poorly known. The serum levels of Trp, key KP metabolites (kynurenine and kynurenic and quinolinic acids), and cytokines (SI markers) were measured at enrollment in 40 healthy subjects, 39 patients with compensated cirrhosis, 342 with AD (no ACLF) and 180 with ACLF, and repeated in 258 patients during the 28-day follow-up. Urine KP metabolites were measured in 50 patients with ACLF. Serum KP activity was normal in compensated cirrhosis, increased in AD and further increased in ACLF, in parallel with SI; it was remarkably higher in ACLF with kidney failure than in ACLF without kidney failure in the absence of differences in urine KP activity and fractional excretion of KP metabolites. The short-term course of AD and ACLF (worsening, improvement, stable) correlated closely with follow-up changes in serum KP activity. Among patients with AD at enrollment, those with the highest baseline KP activity developed ACLF during follow-up. Among patients who had ACLF at enrollment, those with immune suppression and the highest KP activity, both at baseline, developed nosocomial infections during follow-up. Finally, higher baseline KP activity independently predicted mortality in patients with AD and ACLF. Conclusion: Features of KP activation appear in patients with AD, culminate in patients with ACLF, and may be involved in the pathogenesis of ACLF, clinical course, and mortality.


Assuntos
Insuficiência Hepática Crônica Agudizada/etiologia , Cinurenina/sangue , Cirrose Hepática/complicações , Triptofano/sangue , Insuficiência Hepática Crônica Agudizada/sangue , Idoso , Infecções Bacterianas/sangue , Infecções Bacterianas/complicações , Estudos de Casos e Controles , Europa (Continente)/epidemiologia , Feminino , Encefalopatia Hepática/sangue , Encefalopatia Hepática/complicações , Humanos , Inflamação/sangue , Inflamação/complicações , Cirrose Hepática/sangue , Cirrose Hepática/mortalidade , Cirrose Hepática/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Insuficiência Renal/sangue , Insuficiência Renal/complicações
7.
Mol Metab ; 8: 23-36, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233519

RESUMO

OBJECTIVES: Hypothalamic lipotoxicity has been shown to induce central insulin resistance and dysregulation of glucose homeostasis; nevertheless, elucidation of the regulatory mechanisms remains incomplete. Here, we aimed to determine the role of de novo ceramide synthesis in hypothalamus on the onset of central insulin resistance and the dysregulation of glucose homeostasis induced by obesity. METHODS: Hypothalamic GT1-7 neuronal cells were treated with palmitate. De novo ceramide synthesis was inhibited either by pharmacological (myriocin) or molecular (si-Serine Palmitoyl Transferase 2, siSPT2) approaches. Obese Zucker rats (OZR) were intracerebroventricularly infused with myriocin to inhibit de novo ceramide synthesis. Insulin resistance was determined by quantification of Akt phosphorylation. Ceramide levels were quantified either by a radioactive kinase assay or by mass spectrometry analysis. Glucose homeostasis were evaluated in myriocin-treated OZR. Basal and glucose-stimulated parasympathetic tonus was recorded in OZR. Insulin secretion from islets and ß-cell mass was also determined. RESULTS: We show that palmitate impaired insulin signaling and increased ceramide levels in hypothalamic neuronal GT1-7 cells. In addition, the use of deuterated palmitic acid demonstrated that palmitate activated several enzymes of the de novo ceramide synthesis pathway in hypothalamic cells. Importantly, myriocin and siSPT2 treatment restored insulin signaling in palmitate-treated GT1-7 cells. Protein kinase C (PKC) inhibitor or a dominant-negative PKCζ also counteracted palmitate-induced insulin resistance. Interestingly, attenuating the increase in levels of hypothalamic ceramides with intracerebroventricular infusion of myriocin in OZR improved their hypothalamic insulin-sensitivity. Importantly, central myriocin treatment partially restored glucose tolerance in OZR. This latter effect is related to the restoration of glucose-stimulated insulin secretion and an increase in ß-cell mass of OZR. Electrophysiological recordings also showed an improvement of glucose-stimulated parasympathetic nerve activity in OZR centrally treated with myriocin. CONCLUSION: Our results highlight a key role of hypothalamic de novo ceramide synthesis in central insulin resistance installation and glucose homeostasis dysregulation associated with obesity.


Assuntos
Ceramidas/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Animais , Glicemia/metabolismo , Linhagem Celular , Células Cultivadas , Ceramidas/biossíntese , Secreção de Insulina , Camundongos , Ratos , Ratos Zucker
8.
Diabetologia ; 60(7): 1314-1324, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28456865

RESUMO

AIMS/HYPOTHESIS: Regulation of energy balance involves the participation of many factors, including nutrients, among which are circulating lipids, acting as peripheral signals informing the central nervous system of the energy status of the organism. It has been shown that neuronal lipoprotein lipase (LPL) participates in the control of energy balance by hydrolysing lipid particles enriched in triacylglycerols. Here, we tested the hypothesis that LPL in the mediobasal hypothalamus (MBH), a well-known nucleus implicated in the regulation of metabolic homeostasis, could also contribute to the regulation of body weight and glucose homeostasis. METHODS: We injected an adeno-associated virus (AAV) expressing Cre-green fluorescent protein into the MBH of Lpl-floxed mice (and wild-type mice) to specifically decrease LPL activity in the MBH. In parallel, we injected an AAV overexpressing Lpl into the MBH of wild-type mice. We then studied energy homeostasis and hypothalamic ceramide content. RESULTS: The partial deletion of Lpl in the MBH in mice led to an increase in body weight compared with controls (37.72 ± 0.7 g vs 28.46 ± 0.12, p < 0.001) associated with a decrease in locomotor activity. These mice developed hyperinsulinaemia and glucose intolerance. This phenotype also displayed reduced expression of Cers1 in the hypothalamus as well as decreased concentration of several C18 species of ceramides and a 3-fold decrease in total ceramide intensity. Conversely, overexpression of Lpl specifically in the MBH induced a decrease in body weight. CONCLUSIONS/INTERPRETATION: Our study shows that LPL in the MBH is an important regulator of body weight and glucose homeostasis.


Assuntos
Glucose/metabolismo , Hipotálamo/metabolismo , Lipase Lipoproteica/metabolismo , Aumento de Peso , Animais , Composição Corporal , Peso Corporal , Calorimetria , Ceramidas/metabolismo , Dependovirus , Deleção de Genes , Teste de Tolerância a Glucose , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Hidrólise , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fatores de Tempo , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...