Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 7: 100186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38495771

RESUMO

Marine biofouling causes serious environmental problems and has adverse impacts on the maritime industry. Biofouling on windows and optical equipment reduces surface transparency, limiting their application for on-site monitoring or continuous measurement. This work illustrates that UV emitting glasses (UEGs) can prevent the establishment and growth of biofilm on the illuminated surfaces. Specifically, this paper describes how UEGs are enabled by innovatively modifying the surfaces of the glass with light scattering particles. Modification of glass surface with silica nanoparticles at a concentration 26.5 µg/cm2 resulted in over ten-fold increase in UV irradiance, while maintaining satisfactory visible and IR transparency metrics of over 99 %. The UEG reduced visible biological growth by 98 % and resulted in a decrease of 1.79 log in detected colony forming units when compared to the control during a 20 day submersion at Port Canaveral, Florida, United States. These findings serve as strong evidence that UV emitting glass should be explored as a promising approach for biofilm inhibition on transparent surfaces.

2.
Environ Sci Nano ; 10(9): 2551-2565, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37868332

RESUMO

Biofilms are abundantly present in both natural and engineered environmental systems and will likely influence broader particle fate and transport phenomena. While some developed models describe the interactions between nanoparticles and biofilms, studies are only beginning to uncover the complexity of nanoparticle diffusion patterns. With the knowledge of the nanoparticle potential to influence bacterial processes, more systematic studies are needed to uncover the dynamics of bacteria-nanoparticle interactions. This study explored specific microbial responses to nanoparticles and the heterogeneity of nanoparticle diffusion. Pseudomonas aeruginosa biofilms (cultivated for 48 and 96 hours, representing early and late stages of development) were exposed to charged (aminated and carboxylated) polystyrene nanoparticles. With a combination of advanced fluorescence microscopy and real time quantitative PCR, we characterized the diffusion of polystyrene nanoparticles in P. aeruginosa biofilms and evaluated how biofilms respond to the presence of nanoparticles in terms of the expression of key EPS production-associated genes (pelA and rpsL) and quorum-sensing associated (lasR) genes. Our findings show that nanoparticle diffusion coefficients are independent of the particle surface charge only in mature biofilms and that the presence of nanoparticles influences bacterial gene expression. Independent of the particle's charge polystyrene nanoparticles down-regulated pelA in mature biofilms. By contrast, charge-specific responses were identified in lasR and rpsL gene expression. The targeted genes expression analysis and heterogeneous diffusion models demonstrate that particle charge influences nanoparticle mobility and provides significant insight into the intrinsic structural heterogeneity of P. aeruginosa biofilms. These findings suggest that biofilm maturity and particle charge are essential factors to consider when evaluating the transport of nanoparticles within a biofilm matrix.

3.
J Environ Manage ; 345: 118744, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673006

RESUMO

Winter drawdown (WD) is a common lake management tool for multiple purposes such as flood control, aquatic vegetation reduction, and lake infrastructure maintenance. To minimize adverse impacts to a lake's ecosystem, regulatory agencies may provide managers with general guidelines for drawdown and refill timing, drawdown magnitude, and outflow limitations. However, there is significant uncertainty associated with the potential to meet management targets due to variability in lake characteristics and hydrometeorology of each lake's basin, making the use of modeling tools a necessity. In this context, we developed a hydrological modeling framework for lake water level drawdown management (HMF-Lake) and evaluated it at 15 Massachusetts lakes where WDs have been applied over multiple years for vegetation control. HMF-Lake is based on the daily lake water balance, with inflows simulated by a lumped rainfall-runoff model (Cemaneige-GR4J) and outflow rate calculated by a modified Target Storage and Release Based Method (TSRB). The model showed a satisfactory performance of simulating historical water levels (0.53 ≤ NSE ≤ 0.86), however, uncertainties from meteorological inputs and TSRB determined lake outflow rate affected the result accuracy. To account for these uncertainties, the model was executed stochastically to assess the ability of study lakes to follow the Massachusetts' general WD guidelines: drawdown by Dec 1 and fully refilled by Apr 1. By using the stochastic HMF-Lake, the probabilities of each lake to reach the drawdown level by Dec 1 were calculated for different drawdown magnitudes (1-6 ft). The probability results suggest it was generally less possible for most of study lakes to achieve a drawdown of 3 ft or more by Dec 1. Moreover, we employed the stochastic model to derive the annual latest refill starting dates that ensure a 95 % probability of reaching the normal water level by Apr 1. We found starting a refill in March for drawdowns up to 6 ft was feasible for most of study lakes. These results provide lake managers with a quantitative understanding of the lake's ability to follow the state guidelines. The model may be used to systematically evaluate current WD management strategies at state or regional scales and support adaptive WD management under changing climates.


Assuntos
Ecossistema , Lagos , Água , Clima , Inundações
4.
Artigo em Inglês | MEDLINE | ID: mdl-36141515

RESUMO

SARS-CoV-2 RNA loads can be detected in the excreta of individuals with COVID-19 and have demonstrated positive correlations with clinical infection trends. Consequently, wastewater-based epidemiology (WBE) approaches have been implemented globally as a public health surveillance tool to monitor community-level prevalence of infections. The majority of wastewater specimens are gathered as either composite samples via automatic samplers (autosamplers) or grab samples. However, autosamplers are expensive and can be challenging to maintain in cold weather, while grab samples are particularly susceptible to temporal variation when sampling sewage directly from complex matrices outside residential buildings. Passive sampling can provide an affordable, practical, and scalable sampling system while maintaining a reproducible SARS-CoV-2 signal. In this regard, we deployed tampons as passive samplers outside of a COVID-19 isolation unit (a segregated residence hall) at a university campus from 1 February 2021-21 May 2021. Samples (n = 64) were collected 3-5 times weekly and remained within the sewer for a median duration of 24 h. SARS-CoV-2 RNA was quantified using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) targeting the N1 and N2 gene fragments. We quantified the mean viral load captured per individual and the association between the daily viral load and total persons, adjusting for covariates using multivariable models to provide a baseline estimate of viral shedding. Samples were processed through two distinct laboratory pipelines on campus, yielding highly correlated N2 concentrations. Data obtained here highlight the success of passive sampling utilizing tampons to capture SARS-CoV-2 in wastewater coming from a COVID-19 isolation residence, indicating that this method can help inform building-level public health responses.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Prevalência , RNA Viral/análise , SARS-CoV-2/genética , Esgotos , Águas Residuárias/análise
5.
Sci Total Environ ; 835: 155347, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35460780

RESUMO

Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
medRxiv ; 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35441165

RESUMO

SARS-CoV-2 RNA can be detected in the excreta of individuals with COVID-19 and has demonstrated a positive correlation with various clinical parameters. Consequently, wastewater-based epidemiology (WBE) approaches have been implemented globally as a public health surveillance tool to monitor the community-level prevalence of infections. Over 270 higher education campuses monitor wastewater for SARS-CoV-2, with most gathering either composite samples via automatic samplers (autosamplers) or grab samples. However, autosamplers are expensive and challenging to manage with seasonal variability, while grab samples are particularly susceptible to temporal variation when sampling sewage directly from complex matrices outside residential buildings. Prior studies have demonstrated encouraging results utilizing passive sampling swabs. Such methods can offer affordable, practical, and scalable alternatives to traditional methods while maintaining a reproducible SARS-CoV-2 signal. In this regard, we deployed tampons as passive samplers outside of a COVID-19 isolation unit (a segregated residence hall) at a university campus from February 1, 2021 â€" May 21, 2021. Samples were collected several times weekly and remained within the sewer for a minimum of 24 hours (n = 64). SARS-CoV-2 RNA was quantified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) targeting the viral N1 and N2 gene fragments. We quantified the mean viral load captured per individual and the association between the daily viral load and total persons, adjusting for covariates using multivariable models to provide a baseline estimate of viral shedding. Samples were processed through two distinct laboratory pipelines on campus, yielding highly correlated N2 concentrations. Data obtained here highlight the success of passive sampling utilizing tampons to capture SARS-CoV-2 in wastewater coming from a COVID-19 isolation residence, indicating that this method can help inform public health responses in a range of settings. Highlights: Daily SARS-CoV-2 RNA loads in building-level wastewater were positively associated with the total number of COVID-19 positive individuals in the residenceThe variation in individual fecal shedding rates of SARS-CoV-2 extended four orders of magnitudeWastewater sample replicates were highly correlated using distinct processing pipelines in two independent laboratoriesWhile the isolation residence was occupied, SARS-CoV-2 RNA was detected in all passive samples.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33922263

RESUMO

Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vigilância em Saúde Pública , Universidades , Águas Residuárias
8.
medRxiv ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33564791

RESUMO

Background: Wastewater surveillance for SARS-CoV-2 is an emerging approach to help identify the risk of a COVID-19 outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, nursing homes) scales. Objectives: This research aims to understand the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. Methods: This paper presents the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resource needs, and lessons learned from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Discussion: Our analysis suggests that wastewater monitoring at colleges requires consideration of information needs, local sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.

9.
Environ Sci Technol ; 54(8): 5159-5166, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32182039

RESUMO

Most bacteria in natural and engineered environments grow and exist in biofilms. Recent investigations have shown that nanoparticles (NPs) interact with environmental biofilms, but these interactions are still not well characterized. Extracellular polymeric substances (EPS) are polymers secreted by bacteria to establish the functional and structural integrity of biofilms, and EPS porosity is a major contributor to NP access to and diffusion in biofilms. We used a synergistic combination of total internal reflection fluorescence microscopy and image correlation spectroscopy to monitor and map diffusion of fluorescent NPs in alginate yielding a detailed picture of the heterogeneous structure and connectivity of pores within a model EPS polymer. Using different sizes (20, 100, and 200 nm) of carboxylated polystyrene NPs, we examined how NP diffusive behaviors change as a result of calcium-induced cross-linking of the alginate matrix. This study reveals that cross-linking decreases NP diffusion coefficients and pore accessibility in an NP size-dependent manner and that NP movement through alginate matrices is anisotropic and heterogeneous. These results on heterogeneous and size-dependent movement within biofilms have important implications for future studies and simulations of NP-biofilm interactions.


Assuntos
Nanopartículas , Poliestirenos , Alginatos , Biofilmes , Tamanho da Partícula
10.
Environ Sci Technol ; 54(1): 486-496, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31790233

RESUMO

Oxygenic photogranules (OPGs), spherical aggregates comprised of phototrophic and nonphototrophic microorganisms, treat wastewater without aeration, which currently incurs the highest energy demand in wastewater treatment. In wastewater-treatment reactors, photogranules grow in number as well as in size. Currently, it is unknown how the photogranules grow in size and how the growth impacts their properties and performance in wastewater treatment. Here, we present that the photogranules' growth occurs with changes in phototrophic community and granular morphology. We observed that as the photogranules grow larger, filamentous cyanobacteria become enriched while other phototrophic microbes diminish significantly. The photogranules greater than 3 mm in diameter showed the development of a layered structure in which a concentric filamentous cyanobacterial layer encloses noncyanobacterial aggregates. We observed that the growth of photogranules significantly impacts their capability of producing oxygen, the key element in OPG wastewater treatment. Among seven size classes investigated in this study, photogranules in the 0.5-1 mm size group showed the highest specific oxygen production rate (SOPR), 21.9 ± 1.3 mg O2/g VSS-h, approximately 75% greater than the SOPR of mixed photogranular biomass. We discuss engineering the OPG process based on photogranules' size, promoting the stability of the granular process and enhancing efficiency for self-aerating wastewater treatment.


Assuntos
Cianobactérias , Águas Residuárias , Biomassa , Reatores Biológicos , Oxigênio , Esgotos , Eliminação de Resíduos Líquidos
11.
Environ Sci Technol ; 52(18): 10462-10471, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30153020

RESUMO

Oxygenic photogranules have received increasing interest due to their ability to treat wastewater without aeration and recover wastewater's chemical energy and solar energy. It has been reported that these photogranules can be produced under both hydrostatic and hydrodynamic conditions, and enrichment of filamentous cyanobacteria is required for this photogranulation to occur. Despite the critical role extracellular polymeric substances (EPS) play in granulation, EPS in photogranulation is yet virtually unknown. Here, we present the fate and dynamics of different fractions of EPS in sludge-based photogranulation under hydrostatic conditions. The study shows that during the transformation of activated sludge into a photogranular biomass, sludge's base-extractable proteins selectively degrade. Strong correlations between base-extracted proteins and the growth of chlorophyll a and chlorophyll a/ b ratio suggest that the bioavailability of this organic nitrogen is linked with selection and enrichment of filamentous cyanobacteria under hydrostatic conditions. The results of soluble and sonication-extractable EPS and microscopy also show that the growth of filamentous cyanobacteria required large amounts of polysaccharide-based EPS for their motility and maintenance. With findings on the progression of photogranulation, the fate and dynamics of EPS, and microscopy on microstructures associated with EPS, we discuss potential mechanisms of photogranulation occurring under hydrostatic conditions.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Biomassa , Clorofila A , Águas Residuárias
12.
Environ Sci Technol ; 52(6): 3503-3511, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29505719

RESUMO

This study presents the oxygenic photogranule (OPG) process, a light-driven process for wastewater treatment, developed based on photogranulation of filamentous cyanobacteria, nonphototrophic bacteria, and microalgae. Unlike other biogranular processes requiring airlift or upflow-based mixing, the OPG process was operated in stirred-tank reactors without aeration. Reactors were seeded with hydrostatically grown photogranules and operated in a sequencing-batch mode for five months to treat wastewater. The new reactor biomass propagated with progression of photogranulation under periodic light/dark cycles. Due to effective biomass separation from water, the system was operated with short settling time (10 min) with effective decoupling of hydraulic and solids retention times (0.75 d vs 21-42 d). During quasi-steady state, the diameter of the OPGs ranged between 0.1 and 4.5 mm. The reactors produced effluents with average total chemical oxygen demand less than 30 mg/L. Nitrogen removal (28-71%) was achieved by bioassimilation and nitrification/denitrification pathways. Oxygen needed for the oxidation of organic matter and nitrification was produced by OPGs at a rate of 12.6 ± 2.4 mg O2/g biomass-h. The OPG system presents a new biogranule process, which can potentially use simple mixing and natural light to treat wastewater.


Assuntos
Oxigênio , Águas Residuárias , Reatores Biológicos , Nitrificação , Nitrogênio , Eliminação de Resíduos Líquidos
13.
Sci Rep ; 7(1): 17944, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263358

RESUMO

Microorganisms often respond to their environment by growing as densely packed communities in biofilms, flocs or granules. One major advantage of life in these aggregates is the retention of its community in an ecosystem despite flowing water. We describe here a novel type of granule dominated by filamentous and motile cyanobacteria of the order Oscillatoriales. These bacteria form a mat-like photoactive outer layer around an otherwise unconsolidated core. The spatial organization of the phototrophic layer resembles microbial mats growing on sediments but is spherical. We describe the production of these oxygenic photogranules under static batch conditions, as well as in turbulently mixed bioreactors. Photogranulation defies typically postulated requirements for granulation in biotechnology, i.e., the need for hydrodynamic shear and selective washout. Photogranulation as described here is a robust phenomenon with respect to inoculum characteristics and environmental parameters like carbon sources. A bioprocess using oxygenic photogranules is an attractive candidate for energy-positive wastewater treatment as it biologically couples CO2 and O2 fluxes. As a result, the external supply of oxygen may become obsolete and otherwise released CO2 is fixed by photosynthesis for the production of an organic-rich biofeedstock as a renewable energy source.


Assuntos
Oscillatoria/metabolismo , Dióxido de Carbono/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Sedimentos Geológicos/microbiologia , Microscopia Eletrônica de Varredura , Oscillatoria/crescimento & desenvolvimento , Oscillatoria/ultraestrutura , Oxigênio/metabolismo
14.
AMB Express ; 7(1): 146, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28697582

RESUMO

Recently, the use of phototrophs for wastewater treatment has been revisited because of new approaches to separate them from effluent streams. One manifestation uses oxygenic photogranules (OPGs) which are dense, easily-settleable granular biofilms of cyanobacteria, which surrounding populations of heterotrophs, autotrophs, and microalgae. OPGs can remove COD and nitrogenous compounds without external aeration. To better grow and maintain biomass in the proposed wastewater process, this study seeks to understand the factors that contribute to successful granulation. Availability of initial inorganic nitrogen, particularly ammonium, was associated with successful cultivation of OPGs. In the first days of granulation, a decrease in ammonium coupled with an increase in a cyanobacterial-specific 16S rRNA gene, may suggest that ammonium was assimilated in cyanobacteria offering a competitive environment for growth. Though both successful and unsuccessful OPG formation demonstrated a shift from non-phototrophic bacterial dominated communities on day 0 to cyanobacterial dominated communities on day 42, the successful community had a greater relative abundance (46%) of OTUs associated with genera Oscillatoria and Geitlernema than the unsuccessful community (27%), supporting that filamentous cyanobacteria are essential for successful OPG formation. A greater concentration of chlorophyll b in the unsuccessful OPG formation suggested a greater abundance of algal species. This study offers indicators of granulation success, notably availability of inorganic nitrogen and chlorophyll a and b concentrations for monitoring the health and growth of biomass for a potential OPG process.

15.
Environ Sci Technol ; 51(9): 5334-5342, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28374997

RESUMO

A poorly understood phenomenon with a potentially significant impact on electron recovery is competition in microbial fuel cells (MFC) between anode-respiring bacteria and microorganisms that use other electron acceptors. Nitrate is a constituent of different wastewaters and can act as a competing electron acceptor in the anode. Studies investigating the impact of competition on population dynamics in mixed communities in the anode are lacking. Here, we investigated the impact of nitrate at different C/N ratios of 1.8, 3.7, and 7.4 mg C/mg N on the electrochemical performance and the biofilm community in mixed-culture chemostat MFCs. The electrochemical performance of the MFC was not affected under electron donor non-limiting conditions, 7.4 mg C/mg N. At lower C/N, electron donor limiting and ratio electron recovery were significantly affected. The electrochemical performance recovered upon removal of nitrate at 3.7 mg C/mg N but did not at 1.8 mg C/mg N. Microbial community analysis showed a decrease in Deltaproteobacteria accompanied by an increase in Betaproteobacteria in response to nitrate at low C/N ratios and no significant changes at 7.4 mg C/mg N. Transcriptional analysis showed increased transcription of nirK and nirS genes during nitrate flux, suggesting that denitrification to N2 and not facultative nitrate reduction by Geobacter spp. might be the primary response to perturbation with nitrate.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Desnitrificação , Geobacter , Nitratos
16.
Front Microbiol ; 7: 1879, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965629

RESUMO

As interest and application of renewable energy grows, strategies are needed to align the asynchronous supply and demand. Microbial metabolisms are a potentially sustainable mechanism for transforming renewable electrical energy into biocommodities that are easily stored and transported. Acetogens and methanogens can reduce carbon dioxide to organic products including methane, acetic acid, and ethanol. The library of biocommodities is expanded when engineered metabolisms of acetogens are included. Typically, electrochemical systems are employed to integrate renewable energy sources with biological systems for production of carbon-based commodities. Within these systems, there are three prevailing mechanisms for delivering electrons to microorganisms for the conversion of carbon dioxide to reduce organic compounds: (1) electrons can be delivered to microorganisms via H2 produced separately in a electrolyzer, (2) H2 produced at a cathode can convey electrons to microorganisms supported on the cathode surface, and (3) a cathode can directly feed electrons to microorganisms. Each of these strategies has advantages and disadvantages that must be considered in designing full-scale processes. This review considers the evolving understanding of each of these approaches and the state of design for advancing these strategies toward viability.

17.
Front Microbiol ; 7: 253, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26955373
18.
Front Microbiol ; 6: 468, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029199

RESUMO

Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

19.
Environ Sci Technol ; 44(12): 4685-91, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20476736

RESUMO

Perchlorate is an emerging surface water and groundwater contaminant, and it is of concern because of its mobility in the environment and its inhibitory effect on thyroid function. Microbial fuel cells (MFCs) may be a suitable method for its treatment. We investigated a MFC with a denitrifying biocathode for perchlorate reduction and utilized the system to identify putative biocathode-utilizing perchlorate-reducing bacteria (PCRB). Perchlorate reduction in the MFC was established by increasing the perchlorate loading to the biocathode, while decreasing nitrate loading. Perchlorate reduction was obtained without the need for exogenous electron shuttles or fixed electrode potentials, achieving a maximum perchlorate removal of 24 mg/L-d and cathodic conversion efficiency of 84%. The perchlorate-reducing biocathode bacterial community, which contained putative denitrifying Betaproteobacteria, shared little overlap with a purely denitrifying biocathode community, and was composed primarily of putative iron-oxidizing genera. Despite differences in cathodic function, the anode communities from the perchlorate-reducing MFC and the denitrifying MFC were similar to each other but different than their corresponding biocathode community. These data indicate that PCRB can utilize a cathode as an electron donor, and that this process can be harnessed to treat perchlorate while producing usable electrical power.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biocombustíveis/microbiologia , Técnicas Eletroquímicas/métodos , Percloratos/isolamento & purificação , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Eletrodos/microbiologia , Concentração de Íons de Hidrogênio , Nitratos/análise , Oxirredução , Análise de Componente Principal , Eliminação de Resíduos Líquidos
20.
Appl Microbiol Biotechnol ; 86(5): 1399-408, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20098985

RESUMO

Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Polímeros de Fluorcarboneto/metabolismo , Geobacter/metabolismo , Grafite/metabolismo , Membranas Artificiais , Oxigênio/metabolismo , Politetrafluoretileno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...