Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Virol ; 98(6): e0004924, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742901

RESUMO

SARS-CoV-2 3C-like main protease (3CLpro) is essential for protein excision from the viral polyprotein. 3CLpro inhibitor drug development to block SARS-CoV-2 replication focuses on the catalytic non-prime (P) side for specificity and potency, but the importance of the prime (P') side in substrate specificity and for drug development remains underappreciated. We determined the P6-P6' specificity for 3CLpro from >800 cleavage sites that we identified using Proteomic Identification of Cleavage site Specificity (PICS). Cleavage occurred after the canonical P1-Gln and non-canonical P1-His and P1-Met residues. Moreover, P3 showed a preference for Arg/Lys and P3' for His. Essential H-bonds between the N-terminal Ser1 of protomer-B in 3CLpro dimers form with P1-His, but not with P1-Met. Nonetheless, cleavage occurs at P1-Met456 in native MAP4K5. Elevated reactive oxygen species in SARS-CoV-2 infection oxidize methionines. Molecular simulations revealed P1-MetOX forms an H-bond with Ser1 and notably, strong positive cooperativity between P1-Met with P3'-His was revealed, which enhanced peptide-cleavage rates. The highly plastic S3' subsite accommodates P3'-His that displays stabilizing backbone H-bonds with Thr25 lying central in a "'threonine trio" (Thr24-Thr25-Thr26) in the P'-binding domain I. Molecular docking simulations unveiled structure-activity relationships impacting 3CLpro-substrate interactions, and the role of these structural determinants was confirmed by MALDI-TOF-MS cleavage assays of P1'- and P3'-positional scanning peptide libraries carrying a 2nd optimal cut-site as an internal positive control. These data informed the design of two new and highly soluble 3CLproquenched-fluorescent peptide substrates for improved FRET monitoring of 3CLpro activity with 15× improved sensitivity over current assays.IMPORTANCEFrom global proteomics identification of >800 cleavage sites, we characterized the P6-P6' active site specificity of SARS-CoV-2 3CLpro using proteome-derived peptide library screens, molecular modeling simulations, and focussed positional peptide libraries. In P1', we show that alanine and serine are cleaved 3× faster than glycine and the hydrophobic small amino acids Leu, Ile, or Val prevent cleavage of otherwise optimal non-prime sequences. In characterizing non-canonical non-prime P1 specificity, we explored the unusual P1-Met specificity, discovering enhanced cleavage when in the oxidized state (P1-MetOX). We unveiled unexpected amino acid cooperativity at P1-Met with P3'-His and noncanonical P1-His with P2-Phe, and the importance of the threonine trio (Thr24-Thr25-Thr26) in the prime side binding domain I in defining prime side binding in SARS-CoV-2 3CLpro. From these analyses, we rationally designed quenched-fluorescence natural amino acid peptide substrates with >15× improved sensitivity and high peptide solubility, facilitating handling and application for screening of new antiviral drugs.


Assuntos
Proteases 3C de Coronavírus , Proteômica , SARS-CoV-2 , Humanos , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , COVID-19/virologia , COVID-19/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/química , Proteômica/métodos , SARS-CoV-2/enzimologia , Especificidade por Substrato
2.
Matrix Biol ; 123: 59-70, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804930

RESUMO

Extracellular proteolysis and turnover are core processes of tissue homeostasis. The predominant matrix-degrading enzymes are members of the Matrix Metalloproteinase (MMP) family. MMPs extensively degrade core matrix components in addition to processing a range of other factors in the extracellular, plasma membrane, and intracellular compartments. The proteolytic activity of MMPs is modulated by the Tissue Inhibitors of Metalloproteinases (TIMPs), a family of four multi-functional matrisome proteins with extensively characterized MMP inhibitory functions. Thus, a well-regulated balance between MMP activity and TIMP levels has been described as critical for healthy tissue homeostasis, and this balance can be chronically disturbed in pathological processes. The relationship between MMPs and TIMPs is complex and lacks the constraints of a typical enzyme-inhibitor relationship due to secondary interactions between various MMPs (specifically gelatinases) and TIMP family members. We illustrate a new complexity in this system by describing how MMP9 can cleave members of the TIMP family when in molar excess. Proteolytic processing of TIMPs can generate functionally altered peptides with potentially novel attributes. We demonstrate here that all TIMPs are cleaved at their C-terminal tails by a molar excess of MMP9. This processing removes the N-glycosylation site for TIMP3 and prevents the TIMP2 interaction with latent proMMP2, a prerequisite for cell surface MMP14-mediated activation of proMMP2. TIMP2/4 are further cleaved producing ∼14 kDa N-terminal proteins linked to a smaller C-terminal domain through residual disulfide bridges. These cleaved TIMP2/4 complexes show perturbed MMP inhibitory activity, illustrating that MMP9 may bear a particularly prominent influence upon the TIMP:MMP balance in tissues.


Assuntos
Metaloproteinase 9 da Matriz , Inibidores Teciduais de Metaloproteinases , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteólise , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Gelatinases/metabolismo , Proteínas/metabolismo
3.
Cell Rep ; 37(4): 109892, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34672947

RESUMO

The main viral protease (3CLpro) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CLpro by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CLpro engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CLpro targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CLpro substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARS-CoV-2 pathology and drug design.


Assuntos
COVID-19 , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Humanos , Especificidade por Substrato
4.
J Biol Chem ; 295(8): 2186-2202, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31771979

RESUMO

Tyrosyl-tRNA synthetase ligates tyrosine to its cognate tRNA in the cytoplasm, but it can also be secreted through a noncanonical pathway. We found that extracellular tyrosyl-tRNA synthetase (YRS) exhibited proinflammatory activities. In addition to acting as a monocyte/macrophage chemoattractant, YRS initiated signaling through Toll-like receptor 2 (TLR2) resulting in NF-κB activation and release of tumor necrosis factor α (TNFα) and multiple chemokines, including MIP-1α/ß, CXCL8 (IL8), and CXCL1 (KC) from THP1 monocyte and peripheral blood mononuclear cell-derived macrophages. Furthermore, YRS up-regulated matrix metalloproteinase (MMP) activity in a TNFα-dependent manner in M0 macrophages. Because MMPs process a variety of intracellular proteins that also exhibit extracellular moonlighting functions, we profiled 10 MMPs for YRS cleavage and identified 55 cleavage sites by amino-terminal oriented mass spectrometry of substrates (ATOMS) positional proteomics and Edman degradation. Stable proteoforms resulted from cleavages near the start of the YRS C-terminal EMAPII domain. All of the MMPs tested cleaved at ADS386↓387LYV and VSG405↓406LVQ, generating 43- and 45-kDa fragments. The highest catalytic efficiency for YRS was demonstrated by MMP7, which is highly expressed by monocytes and macrophages, and by neutrophil-specific MMP8. MMP-cleaved YRS enhanced TLR2 signaling, increased TNFα secretion from macrophages, and amplified monocyte/macrophage chemotaxis compared with unprocessed YRS. The cleavage of YRS by MMP8, but not MMP7, was inhibited by tyrosine, a substrate of the YRS aminoacylation reaction. Overall, the proinflammatory activity of YRS is enhanced by MMP cleavage, which we suggest forms a feed-forward mechanism to promote inflammation.


Assuntos
Espaço Extracelular/enzimologia , Mediadores da Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , Tirosina-tRNA Ligase/metabolismo , Quimiocinas/metabolismo , Quimiotaxia , Estabilidade Enzimática , Humanos , Macrófagos/metabolismo , Modelos Biológicos , Monócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Especificidade por Substrato , Células THP-1 , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/metabolismo
5.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514474

RESUMO

Matrix metalloproteinases (MMPs) have traditionally been considered as tumor promoting enzymes as they degrade extracellular matrix components, thus increasing the invasion of cancer cells. It has become evident, however, that MMPs can also cleave and alter the function of various non-matrix bioactive molecules, leading to both tumor promoting and suppressive effects. We applied systematic review guidelines to study MMP8 in cancer including the use of MMP8 as a prognostic factor or as a target/anti-target in cancer treatment, and its molecular mechanisms. A total of 171 articles met the inclusion criteria. The collective evidence reveals that in breast, skin and oral tongue cancer, MMP8 inhibits cancer cell invasion and proliferation, and protects patients from metastasis via cleavage of non-structural substrates. Conversely, in liver and gastric cancers, high levels of MMP8 worsen the prognosis. Expression and genetic alterations of MMP8 can be used as a prognostic factor by examination of the tumor and serum/plasma. We conclude, that MMP8 has differing effects on cancers depending on their tissue of origin. The use of MMP8 as a prognostic factor alone, or with other factors, seems to have potential. The molecular mechanisms of MMP8 in cancer further emphasize its role as an important regulator of bioactive molecules.


Assuntos
Metaloproteinase 8 da Matriz/metabolismo , Neoplasias/enzimologia , Animais , Biomarcadores Tumorais/metabolismo , Epigênese Genética , Humanos , Metaloproteinase 8 da Matriz/sangue , Neoplasias/sangue , Neoplasias/genética , Polimorfismo de Nucleotídeo Único/genética , Prognóstico
6.
J Biol Chem ; 294(35): 12866-12879, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31324718

RESUMO

Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.


Assuntos
Inflamação/metabolismo , Interferon gama/metabolismo , Metaloproteinases da Matriz/metabolismo , Triptofano-tRNA Ligase/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Macrófagos/metabolismo
7.
J Med Chem ; 62(15): 7185-7209, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31251594

RESUMO

Aminopeptidase N (APN/CD13) is a zinc-dependent M1 aminopeptidase that contributes to cancer progression by promoting angiogenesis, metastasis, and tumor invasion. We have previously identified hydroxamic acid-containing analogues that are potent inhibitors of the APN homologue from the malarial parasite Plasmodium falciparum M1 aminopeptidase (PfA-M1). Herein, we describe the rationale that underpins the repurposing of PfA-M1 inhibitors as novel APN inhibitors. A series of novel hydroxamic acid analogues were developed using a structure-based design approach and evaluated their inhibition activities against APN. N-(2-(Hydroxyamino)-2-oxo-1-(3',4',5'-trifluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(methylsulfonamido)benzamide (6ad) proved to be an extremely potent inhibitor of APN activity in vitro, selective against other zinc-dependent enzymes such as matrix metalloproteases, and possessed limited cytotoxicity against Ad293 cells and favorable physicochemical and metabolic stability properties. The combined results indicate that compound 6ad may be a useful lead for the development of anticancer agents.


Assuntos
Antígenos CD13/antagonistas & inibidores , Antígenos CD13/metabolismo , Descoberta de Drogas/métodos , Animais , Sítios de Ligação/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína
8.
J Med Chem ; 62(2): 622-640, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30537832

RESUMO

There is an urgent clinical need for antimalarial compounds that target malaria caused by both Plasmodium falciparum and Plasmodium vivax. The M1 and M17 metalloexopeptidases play key roles in Plasmodium hemoglobin digestion and are validated drug targets. We used a multitarget strategy to rationally design inhibitors capable of potent inhibition of the M1 and M17 aminopeptidases from both P. falciparum ( Pf-M1 and Pf-M17) and P. vivax ( Pv-M1 and Pv-M17). The novel chemical series contains a hydroxamic acid zinc binding group to coordinate catalytic zinc ion/s, and a variety of hydrophobic groups to probe the S1' pockets of the four target enzymes. Structural characterization by cocrystallization showed that selected compounds utilize new and unexpected binding modes; most notably, compounds substituted with bulky hydrophobic substituents displace the Pf-M17 catalytic zinc ion. Excitingly, key compounds of the series potently inhibit all four molecular targets and show antimalarial activity comparable to current clinical candidates.


Assuntos
Aminopeptidases/antagonistas & inibidores , Antimaláricos/química , Ácidos Hidroxâmicos/química , Plasmodium/enzimologia , Inibidores de Proteases/química , Proteínas de Protozoários/antagonistas & inibidores , Aminopeptidases/metabolismo , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Sítios de Ligação , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Células HEK293 , Humanos , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Plasmodium/efeitos dos fármacos , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
9.
Matrix Biol ; 65: 30-44, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28634008

RESUMO

The natural aging process and various pathologies correlate with alterations in the composition and the structural and mechanical integrity of the connective tissue. Collagens represent the most abundant matrix proteins and provide for the overall stiffness and resilience of tissues. The structural changes of collagens and their susceptibility to degradation are associated with skin wrinkling, bone and cartilage deterioration, as well as cardiovascular and respiratory malfunctions. Here, matrix metalloproteinases (MMPs) are major contributors to tissue remodeling and collagen degradation. During aging, collagens are modified by mineralization, accumulation of advanced glycation end-products (AGEs), and the depletion of glycosaminoglycans (GAGs), which affect fiber stability and their susceptibility to MMP-mediated degradation. We found a reduced collagenolysis in mineralized and AGE-modified collagen fibers when compared to native fibrillar collagen. GAGs had no effect on MMP-mediated degradation of collagen. In general, MMP digestion led to a reduction in the mechanical strength of native and modified collagen fibers. Successive fiber degradation with MMPs and the cysteine-dependent collagenase, cathepsin K (CatK), resulted in their complete degradation. In contrast, MMP-generated fragments were not or only poorly cleaved by non-collagenolytic cathepsins such as cathepsin V (CatV). In conclusion, our data indicate that aging and disease-associated collagen modifications reduce tissue remodeling by MMPs and decrease the structural and mechanic integrity of collagen fibers, which both may exacerbate extracellular matrix pathology.


Assuntos
Envelhecimento/metabolismo , Catepsina K/metabolismo , Colágeno/química , Metaloproteinases da Matriz/metabolismo , Animais , Produtos Finais de Glicação Avançada/metabolismo , Glicosaminoglicanos/metabolismo , Camundongos , Estabilidade Proteica , Proteólise
10.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt A): 2043-2055, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28526562

RESUMO

Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.


Assuntos
Citocinas/metabolismo , Matriz Extracelular/enzimologia , Metaloproteinases da Matriz/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Transdução de Sinais/fisiologia , Animais , Humanos
11.
Mol Cell Proteomics ; 16(6): 1038-1051, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385878

RESUMO

Protein interactions shape proteome function and thus biology. Identification of protein interactions is a major goal in molecular biology, but biochemical methods, although improving, remain limited in coverage and accuracy. Whereas computational predictions can guide biochemical experiments, low validation rates of predictions remain a major limitation. Here, we investigated computational methods in the prediction of a specific type of interaction, the inhibitory interactions between proteases and their inhibitors. Proteases generate thousands of proteoforms that dynamically shape the functional state of proteomes. Despite the important regulatory role of proteases, knowledge of their inhibitors remains largely incomplete with the vast majority of proteases lacking an annotated inhibitor. To link inhibitors to their target proteases on a large scale, we applied computational methods to predict inhibitory interactions between proteases and their inhibitors based on complementary data, including coexpression, phylogenetic similarity, structural information, co-annotation, and colocalization, and also surveyed general protein interaction networks for potential inhibitory interactions. In testing nine predicted interactions biochemically, we validated the inhibition of kallikrein 5 by serpin B12. Despite the use of a wide array of complementary data, we found a high false positive rate of computational predictions in biochemical follow-up. Based on a protease-specific definition of true negatives derived from the biochemical classification of proteases and inhibitors, we analyzed prediction accuracy of individual features, thereby we identified feature-specific limitations, which also affected general protein interaction prediction methods. Interestingly, proteases were often not coexpressed with most of their functional inhibitors, contrary to what is commonly assumed and extrapolated predominantly from cell culture experiments. Predictions of inhibitory interactions were indeed more challenging than predictions of nonproteolytic and noninhibitory interactions. In summary, we describe a novel and well-defined but difficult protein interaction prediction task and thereby highlight limitations of computational interaction prediction methods.


Assuntos
Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Humanos , Aprendizado de Máquina , Filogenia , Mapeamento de Interação de Proteínas
12.
Matrix Biol ; 59: 23-38, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27471094

RESUMO

Members of the CCN family of matricellular proteins are cytokines linking cells to the extracellular matrix. We report that CCN3 (Nov) and CCN5 (WISP2) are novel substrates of MMP14 (membrane-type 1-matrix metalloproteinase, MT1-MMP) that we identified using MMP14 "inactive catalytic domain capture" (ICDC) as a yeast two-hybrid protease substrate trapping platform in parallel with degradomics mass spectrometry screens for MMP14 substrates. CCN3 and CCN5, previously unknown substrates of MMPs, were biochemically validated as substrates of MMP14 and other MMPs in vitro-CCN5 was processed in the variable region by MMP14 and MMP2, as well as by MMP1, 3, 7, 8, 9 and 15. CCN1, 2 and 3 are proangiogenic factors yet we found novel opposing activity of CCN5 that was potently antiangiogenic in an aortic ring vessel outgrowth model. MMP14, a known regulator of angiogenesis, cleaved CCN5 and abrogated the angiostatic activity. CCN3 was also processed in the variable region by MMP14 and MMP2, and by MMP1, 8 and 9. In addition to the previously reported cleavages of CCN1 and CCN2 by several MMPs we found that MMPs 8, 9, and 1 process CCN1, and MMP8 and MMP9 also process CCN2. Thus, our study reveals additional and pervasive family-wide processing of CCN matricellular proteins/cytokines by MMPs. Furthermore, CCN5 cleavage by proangiogenic MMPs results in removal of an angiogenic brake held by CCN5. This highlights the importance of thorough dissection of MMP substrates that is needed to reveal higher-level control mechanisms beyond type IV collagen and other extracellular matrix protein remodelling in angiogenesis. SUMMARY: We find CCN family member cleavage by MMPs is more pervasive than previously reported and includes CCN3 (Nov) and CCN5 (WISP2). CCN5 is a novel antiangiogenic factor, whose function is abrogated by proangiogenic MMP cleavage. By processing CCN proteins, MMPs regulate cell responses angiogenesis in connective tissues.


Assuntos
Proteínas de Sinalização Intercelular CCN/química , Vetores Genéticos/metabolismo , Metaloproteinase 14 da Matriz/química , Proteína Sobre-Expressa em Nefroblastoma/química , Proteínas Repressoras/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Células HeLa , Humanos , Células MCF-7 , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Modelos Moleculares , Proteína Sobre-Expressa em Nefroblastoma/genética , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
13.
Cell Rep ; 16(6): 1762-1773, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477282

RESUMO

Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS), a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%-44% of 139 cleavages). This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%-83%) for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.


Assuntos
Catepsinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Animais , Carcinogênese/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Especificidade por Substrato/fisiologia
14.
Data Brief ; 7: 299-310, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26981551

RESUMO

The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265.

15.
Matrix Biol ; 49: 37-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26407638

RESUMO

Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with leucine locked in S1'. Similar negative cooperativity between P3 proline and the novel preference for asparagine in P1 cements our conclusion that non-prime side flexibility greatly impacts MMP binding affinity and cleavage efficiency. Thus, unexpected sequence cooperativity consequences were revealed by PICS that uniquely encompasses both the non-prime and prime sides flanking the proteomic-pinpointed scissile bond.


Assuntos
Metaloproteinases da Matriz/química , Metaloproteinases da Matriz/metabolismo , Biblioteca de Peptídeos , Proteômica/métodos , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Especificidade por Substrato , Espectrometria de Massas em Tandem
16.
Biochimie ; 122: 110-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26542287

RESUMO

Proteolytic processing is a pervasive and irreversible post-translational modification that expands the protein universe by generating new proteoforms (protein isoforms). Unlike signal peptide or prodomain removal, protease-generated proteoforms can rarely be predicted from gene sequences. Positional proteomic techniques that enrich for N- or C-terminal peptides from proteomes are indispensable for a comprehensive understanding of a protein's function in biological environments since protease cleavage frequently results in altered protein activity and localization. Proteases often process other proteases and protease inhibitors which perturbs proteolytic networks and potentiates the initial cleavage event to affect other molecular networks and cellular processes in physiological and pathological conditions. This review is aimed at researchers with a keen interest in state of the art systems level positional proteomic approaches that: (i) enable the study of complex protease-protease, protease-inhibitor and protease-substrate crosstalk and networks; (ii) allow the identification of proteolytic signatures as candidate disease biomarkers; and (iii) are expected to fill the Human Proteome Project missing proteins gap. We predict that these methodologies will be an integral part of emerging precision medicine initiatives that aim to customize healthcare, converting reactive medicine into a personalized and proactive approach, improving clinical care and maximizing patient health and wellbeing, while decreasing health costs by eliminating ineffective therapies, trial-and-error prescribing, and adverse drug effects. Such initiatives require quantitative and functional proteome profiling and dynamic disease biomarkers in addition to current pharmacogenomics approaches. With proteases at the pathogenic center of many diseases, high-throughput protein termini identification techniques such as TAILS (Terminal Amine Isotopic Labeling of Substrates) and COFRADIC (COmbined FRActional DIagonal Chromatography) will be fundamental for individual and comprehensive assessment of health and disease.


Assuntos
Peptídeos/metabolismo , Medicina de Precisão/métodos , Proteoma/metabolismo , Proteômica/métodos , Biomarcadores/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Medicina de Precisão/tendências , Processamento de Proteína Pós-Traducional , Proteólise , Proteoma/química , Proteômica/tendências , Especificidade por Substrato
17.
Cell Rep ; 9(2): 618-32, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25310974

RESUMO

Resolution of inflammation reduces pathological tissue destruction and restores tissue homeostasis. Here, we used a proteomic protease substrate discovery approach, terminal amine isotopic labeling of substrates (TAILS), to analyze the role of the macrophage-specific matrix metalloproteinase-12 (MMP12) in inflammation. In murine peritonitis, MMP12 inactivates antithrombin and activates prothrombin, prolonging the activated partial thromboplastin time. Furthermore, MMP12 inactivates complement C3 to reduce complement activation and inactivates the chemoattractant anaphylatoxins C3a and C5a, whereas iC3b and C3b opsonin cleavage increases phagocytosis. Loss of these anti-inflammatory activities in collagen-induced arthritis in Mmp12(-/-) mice leads to unresolved synovitis and extensive articular inflammation. Deep articular cartilage loss is associated with massive neutrophil infiltration and abnormal DNA neutrophil extracellular traps (NETs). The NETs are rich in fibrin and extracellular actin, which TAILS identified as MMP12 substrates. Thus, macrophage MMP12 in arthritis has multiple protective roles in countering neutrophil infiltration, clearing NETs, and dampening inflammatory pathways to prepare for the resolution of inflammation.


Assuntos
Artrite Experimental/metabolismo , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Infiltração de Neutrófilos , Neutrófilos/imunologia , Actinas/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Cartilagem/patologia , Linhagem Celular , Ativação do Complemento , Complemento C3/imunologia , Armadilhas Extracelulares/metabolismo , Fibrina/metabolismo , Masculino , Metaloproteinase 12 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Peritonite/imunologia , Peritonite/metabolismo , Protrombina/metabolismo
18.
Nat Med ; 20(5): 493-502, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784232

RESUMO

Interferon-α (IFN-α) is essential for antiviral immunity, but in the absence of matrix metalloproteinase-12 (MMP-12) or IκBα (encoded by NFKBIA) we show that IFN-α is retained in the cytosol of virus-infected cells and is not secreted. Our findings suggest that activated IκBα mediates the export of IFN-α from virus-infected cells and that the inability of cells in Mmp12(-/-) but not wild-type mice to express IκBα and thus export IFN-α makes coxsackievirus type B3 infection lethal and renders respiratory syncytial virus more pathogenic. We show here that after macrophage secretion, MMP-12 is transported into virus-infected cells. In HeLa cells MMP-12 is also translocated to the nucleus, where it binds to the NFKBIA promoter, driving transcription. We also identified dual-regulated substrates that are repressed both by MMP-12 binding to the substrate's gene exons and by MMP-12-mediated cleavage of the substrate protein itself. Whereas intracellular MMP-12 mediates NFKBIA transcription, leading to IFN-α secretion and host protection, extracellular MMP-12 cleaves off the IFN-α receptor 2 binding site of systemic IFN-α, preventing an unchecked immune response. Consistent with an unexpected role for MMP-12 in clearing systemic IFN-α, treatment of coxsackievirus type B3-infected wild-type mice with a membrane-impermeable MMP-12 inhibitor elevates systemic IFN-α levels and reduces viral replication in pancreas while sparing intracellular MMP-12. These findings suggest that inhibiting extracellular MMP-12 could be a new avenue for the development of antiviral treatments.


Assuntos
Núcleo Celular/genética , Imunidade/genética , Interferon-alfa/genética , Metaloproteinase 12 da Matriz/genética , Animais , Sítios de Ligação , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Citosol/virologia , Células HeLa , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa , Pâncreas/imunologia , Pâncreas/virologia , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/patogenicidade , Replicação Viral/efeitos dos fármacos
19.
Periodontol 2000 ; 63(1): 123-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23931058

RESUMO

Inflammation is a complex and highly regulated process that facilitates the clearance of pathogens and mediates tissue repair. Failure to resolve inflammation can lead to chronic inflammatory diseases such as periodontitis. Matrix metalloproteinases are generally thought to be detrimental in disease because degradation of extracellular matrix contributes to pathology. However, proteomic techniques (degradomics) are revealing that matrix metalloproteinases process a diverse array of substrates and therefore have a broad range of functions. Many matrix metalloproteinase substrates modulate inflammation and hence, by processing these proteins, matrix metalloproteinases can orchestrate the inflammatory response.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Metaloproteinases da Matriz/fisiologia , Periodontite/enzimologia , Citocinas/metabolismo , Matriz Extracelular/enzimologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Inflamação/enzimologia , Proteômica/métodos
20.
Mol Cell Proteomics ; 9(5): 912-27, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20305283

RESUMO

Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed.


Assuntos
Modelos Estatísticos , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Animais , Anexina A2/química , Anexina A2/metabolismo , Domínio Catalítico , Marcação por Isótopo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Proteínas S100/química , Proteínas S100/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...