Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 62(3): 121-130, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326821

RESUMO

Tumor mutational burden (TMB), measured by exome or panel sequencing of tumor tissue or blood (bTMB), is a potential predictive biomarker for treatment benefit in patients with various cancer types receiving immunotherapy targeting checkpoint pathways. However, significant variability in TMB measurement has been observed. We developed contrived bTMB reference materials using DNA from tumor cell lines and donor-matched lymphoblastoid cell lines to support calibration and alignment across laboratories and platforms. Contrived bTMB reference materials were developed using genomic DNA from lung tumor cell lines blended into donor-matched lymphoblastoid cell lines at 0.5% and 2% tumor content, fragmented and size-selected to mirror the size profile of circulating cell-free tumor DNA with TMB scores of 7, 9, 20, and 26 mut/Mb. Variant allele frequency (VAF) and bTMB scores were assessed using PredicineATLAS and GuardantOMNI next-generation sequencing assays. DNA fragment sizes in the contrived reference samples were similar to those found within patient plasma-derived cell-free DNA, and mutational patterns aligned with those in the parental tumor lines. For the 7, 20, and 26 mut/Mb contrived reference samples with 2% tumor content, bTMB scores estimated using either assay aligned with expected scores from the parental tumor cell lines and showed good reproducibility. A bioinformatic filtration step was required to account for low-VAF artifact variants. We demonstrate the feasibility and challenges of producing and using bTMB reference standards across a range of bTMB levels, and how such standards could support the calibration and validation of bTMB platforms and help harmonization between panels and laboratories.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Reprodutibilidade dos Testes , Neoplasias/genética , Mutação , Imunoterapia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/genética
2.
Angiogenesis ; 25(3): 411-434, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35320450

RESUMO

The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.


Assuntos
Peixe-Zebra , Proteína rhoA de Ligação ao GTP , Animais , Animais Geneticamente Modificados , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
J Asthma ; 57(2): 136-139, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30905201

RESUMO

Background: Eosinophilia is frequently a feature of asthma. Sputum analysis can help with the diagnosis and phenotyping of asthma. The current gold standard method is unsuitable for samples <100 mg. However, children frequently produce samples below this threshold.Aim: To compare and validate our modified, small sample (>10 mg and <100 mg) sputum processing method (which omits sample filtering), with the current gold standard. Method: Prospective study of 32 adults with severe asthma providing sputum samples of sufficient size for dual processing. Results: The median (IQR) sample weight was 211.0 (162.4-185.5) mg and 57.5 (22.0-61.6) mg for standard, and small sputum sample processing respectively. There was no statistically significant difference in the median (IQR) cell counts between Method A and B, respectively: eosinophils 3.8% (1.5-14.0) versus 4.9% (1.3-15.5); neutrophils 78.1% (46.5-92.4) versus 65.0% (48.3-86.6). Conclusion: The small sputum sample processing is feasible and reliable, and yields similar results to standard processing.


Assuntos
Asma/diagnóstico , Eosinofilia/diagnóstico , Escarro/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Adulto Jovem
4.
Development ; 144(11): 2070-2081, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506987

RESUMO

The lymphatic vascular system is a hierarchically organized complex network essential for tissue fluid homeostasis, immune trafficking and absorption of dietary fats in the human body. Despite its importance, the assembly of the lymphatic network is still not fully understood. The zebrafish is a powerful model organism that enables study of lymphatic vessel development using high-resolution imaging and sophisticated genetic and experimental manipulation. Although several studies have described early lymphatic development in the fish, lymphatic development at later stages has not been completely elucidated. In this study, we generated a new Tg(mrc1a:egfp)y251 transgenic zebrafish that uses a mannose receptor, C type 1 (mrc1a) promoter to drive strong EGFP expression in lymphatic vessels at all stages of development and in adult zebrafish. We used this line to describe the assembly of the major vessels of the trunk lymphatic vascular network, including the later-developing collateral cardinal, spinal, superficial lateral and superficial intersegmental lymphatics. Our results show that major trunk lymphatic vessels are conserved in the zebrafish, and provide a thorough and complete description of trunk lymphatic vessel assembly.


Assuntos
Sistema Linfático/crescimento & desenvolvimento , Sistema Linfático/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Vasos Linfáticos/metabolismo , Transgenes , Veias/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Development ; 144(1): 115-127, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913637

RESUMO

Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity.


Assuntos
Aorta/embriologia , Comunicação Celular/fisiologia , Células Endoteliais/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Pericitos/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Membrana Basal/citologia , Embrião não Mamífero , Neovascularização Fisiológica/genética , Pericitos/citologia , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/genética , Peixe-Zebra/genética
6.
Wiley Interdiscip Rev Dev Biol ; 5(6): 689-710, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27576003

RESUMO

The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.


Assuntos
Linfangiogênese/fisiologia , Doenças Linfáticas/patologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/patologia , Animais , Drenagem , Humanos
7.
Elife ; 5: e11813, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26814702

RESUMO

During embryonic development, cell type-specific transcription factors promote cell identities, while epigenetic modifications are thought to contribute to maintain these cell fates. Our understanding of how genetic and epigenetic modes of regulation work together to establish and maintain cellular identity is still limited, however. Here, we show that DNA methyltransferase 3bb.1 (dnmt3bb.1) is essential for maintenance of hematopoietic stem and progenitor cell (HSPC) fate as part of an early Notch-runx1-cmyb HSPC specification pathway in the zebrafish. Dnmt3bb.1 is expressed in HSPC downstream from Notch1 and runx1, and loss of Dnmt3bb.1 activity leads to reduced cmyb locus methylation, reduced cmyb expression, and gradual reduction in HSPCs. Ectopic overexpression of dnmt3bb.1 in non-hematopoietic cells is sufficient to methylate the cmyb locus, promote cmyb expression, and promote hematopoietic development. Our results reveal an epigenetic mechanism supporting the maintenance of hematopoietic cell fate via DNA methylation-mediated perdurance of a key transcription factor in HSPCs.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Hematopoese/fisiologia , Animais , Expressão Gênica , Loci Gênicos , Metiltransferases/genética , Metiltransferases/metabolismo , Peixe-Zebra
8.
Development ; 142(8): 1542-52, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813542

RESUMO

Single nucleotide polymorphisms (SNPs) are the benchmark molecular markers for modern genomics. Until recently, relatively few SNPs were known in the zebrafish genome. The use of next-generation sequencing for the positional cloning of zebrafish mutations has increased the number of known SNP positions dramatically. Still, the identified SNP variants remain under-utilized, owing to scant annotation of strain specificity and allele frequency. To address these limitations, we surveyed SNP variation in three common laboratory zebrafish strains using whole-genome sequencing. This survey identified an average of 5.04 million SNPs per strain compared with the Zv9 reference genome sequence. By comparing the three strains, 2.7 million variants were found to be strain specific, whereas the remaining variants were shared among all (2.3 million) or some of the strains. We also demonstrate the broad usefulness of our identified variants by validating most in independent populations of the same laboratory strains. We have made all of the identified SNPs accessible through 'SNPfisher', a searchable online database (snpfisher.nichd.nih.gov). The SNPfisher website includes the SNPfisher Variant Reporter tool, which provides the genomic position, alternate allele read frequency, strain specificity, restriction enzyme recognition site changes and flanking primers for all SNPs and Indels in a user-defined gene or region of the zebrafish genome. The SNPfisher site also contains links to display our SNP data in the UCSC genome browser. The SNPfisher tools will facilitate the use of SNP variation in zebrafish research as well as vertebrate genome evolution.


Assuntos
Variação Genética/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Animais , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra
9.
Am J Med Genet A ; 158A(4): 839-49, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22407726

RESUMO

Two hereditary syndromes, lymphedema-distichiasis (LD) syndrome and blepharo-chelio-dontic (BCD) syndrome include the aberrant growth of eyelashes from the meibomian glands, known as distichiasis. LD is an autosomal dominant syndrome primarily characterized by distichiasis and the onset of lymphedema usually during puberty. Mutations in the forkhead transcription factor FOXC2 are the only known cause of LD. BCD syndrome consists of autosomal dominant abnormalities of the eyelid, lip, and teeth, and the etiology remains unknown. In this report, we describe a proband that presented with distichiasis, microcephaly, bilateral grade IV vesicoureteral reflux requiring ureteral re-implantation, mild intellectual impairment and apparent glomuvenous malformations (GVM). Distichiasis was present in three generations of the proband's maternal side of the family. The GVMs were severe in the proband, and maternal family members exhibited lower extremity varicosities of variable degree. A GLMN (glomulin) gene mutation was identified in the proband that accounts for the observed GVMs; no other family member could be tested. TIE2 sequencing revealed no mutations. In the proband, an additional submicroscopic 265 kb contiguous gene deletion was identified in 16q24.3, located 609 kb distal to the FOXC2 locus, which was inherited from the proband's mother. The deletion includes the C16ORF95, FBXO31, MAP1LC3B, and ZCCHC14 loci and 115 kb of a gene desert distal to FOXC2 and FOXL1. Thus, it is likely that the microcephaly, distichiasis, vesicoureteral, and intellectual impairment in this family may be caused by the deletion of one or more of these genes and/or deletion of distant cis-regulatory elements of FOXC2 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos Humanos Par 16/genética , Linfedema/genética , Criança , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Pestanas/anormalidades , Feminino , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Genótipo , Tumor Glômico/genética , Humanos , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Microcefalia/genética , Paraganglioma Extrassuprarrenal/genética , Receptor TIE-2/genética , Refluxo Vesicoureteral/genética
10.
Methods Cell Biol ; 105: 137-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21951529

RESUMO

Blood vessels perform the fundamental role of providing conduits for the circulation of oxygen and nutrients and the removal of waste products throughout the body. Disruption of tissue perfusion by ischemia or hemorrhage of blood vessels has a range of devastating consequences including stroke. Stroke is a complex trait that includes both genetic and environmental risk factors. The zebrafish is an attractive model for the study of hemorrhagic stroke due to the conservation of the molecular mechanisms of blood vascular development among vertebrates and the experimental advantages that can be applied to zebrafish embryos and larva. This chapter will focus on the maintenance of vascular integrity and some of the seminal experimentation carried out in the zebrafish.


Assuntos
Biologia do Desenvolvimento/métodos , Embrião não Mamífero/fisiopatologia , Ensaios de Triagem em Larga Escala , Hemorragias Intracranianas/fisiopatologia , Larva/fisiologia , Microscopia/métodos , Acidente Vascular Cerebral/fisiopatologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Vasos Sanguíneos/patologia , Modelos Animais de Doenças , Embrião não Mamífero/irrigação sanguínea , Humanos , Hemorragias Intracranianas/genética , Larva/crescimento & desenvolvimento , Mutação , Acidente Vascular Cerebral/genética , Peixe-Zebra/embriologia
11.
Am J Hum Genet ; 88(6): 718-728, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21596366

RESUMO

Moyamoya is a cerebrovascular angiopathy characterized by a progressive stenosis of the terminal part of the intracranial carotid arteries and the compensatory development of abnormal and fragile collateral vessels, also called moyamoya vessels, leading to ischemic and hemorrhagic stroke. Moyamoya angiopathy can either be the sole manifestation of the disease (moyamoya disease) or be associated with various conditions, including neurofibromatosis, Down syndrome, TAAD (autosomal-dominant thoracic aortic aneurysm), and radiotherapy of head tumors (moyamoya syndromes). Its prevalence is ten times higher in Japan than in Europe, and an estimated 6%-12% of moyamoya disease is familial in Japan. The pathophysiological mechanisms of this condition remain obscure. Here, we report on three unrelated families affected with an X-linked moyamoya syndrome characterized by the association of a moyamoya angiopathy, short stature, and a stereotyped facial dysmorphism. Other symptoms include an hypergonadotropic hypogonadism, hypertension, dilated cardiomyopathy, premature coronary heart disease, premature hair graying, and early bilateral acquired cataract. We show that this syndromic moyamoya is caused by Xq28 deletions removing MTCP1/MTCP1NB and BRCC3. We also show that brcc3 morphant zebrafish display angiogenesis defects that are rescued by endothelium-specific expression of brcc3. Altogether, these data strongly suggest that BRCC3, a deubiquitinating enzyme that is part of the cellular BRCA1 and BRISC complexes, is an important player in angiogenesis and that BRCC3 loss-of-function mutations are associated with moyamoya angiopathy.


Assuntos
Vasos Sanguíneos/anormalidades , Cromossomos Humanos X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/genética , Doença de Moyamoya/genética , Neovascularização Fisiológica/genética , Animais , Sequência de Bases , Encéfalo/irrigação sanguínea , Enzimas Desubiquitinantes , Face/anormalidades , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Masculino , Dados de Sequência Molecular , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Peixe-Zebra/anormalidades , Peixe-Zebra/genética
12.
Birth Defects Res C Embryo Today ; 87(3): 222-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19750516

RESUMO

The lymphatic system is essential for fluid homeostasis, immune responses, and fat absorption, and is involved in many pathological processes, including tumor metastasis and lymphedema. Despite its importance, progress in understanding the origins and early development of this system has been hampered by lack of defining molecular markers and difficulties in observing lymphatic cells in vivo and performing genetic and experimental manipulation of the lymphatic system. Recent identification of new molecular markers, new genes with important functional roles in lymphatic development, and new experimental models for studying lymphangiogenesis has begun to yield important insights into the emergence and assembly of this important tissue. This review focuses on the mechanisms regulating development of the lymphatic vasculature during embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese/fisiologia , Sistema Linfático/embriologia , Animais , Células Endoteliais/citologia , Humanos , Sistema Linfático/crescimento & desenvolvimento , Vasos Linfáticos/embriologia , Modelos Animais , Transdução de Sinais , Urodelos/anatomia & histologia , Urodelos/embriologia , Vertebrados/anatomia & histologia , Vertebrados/embriologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia
13.
Am J Med Genet A ; 143A(11): 1212-7, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17458866

RESUMO

Milroy disease, also known as primary congenital lymphedema, is a hereditary form of lymphedema with autosomal dominant inheritance. Individuals with Milroy disease are typically characterized by congenital onset of lymphedema of the lower limbs due to hypoplasia of the lymphatic vessels. The genetic basis of most cases of Milroy disease has not been established, although mutations in the vascular endothelial growth factor receptor VEGFR3 (FLT-4) are responsible for some cases with 17 mutations described to date. In this report, we describe a novel VEGFR3 mutation in exon 22 in a four-generation family in which congenital lymphedema segregates in an autosomal dominant manner. In addition to lymphedema, affected family members had other clinical manifestations associated with Milroy disease including hydrocele, ski jump toenails, large caliber veins, and subcutaneous thickening. We screened VEGFR3 for mutations which revealed a novel 3059A>T transversion in exon 22 resulting in Q1020L missense mutation in the second tyrosine kinase domain of VEGFR3. This mutant allele segregated with lymphedema among affected individuals with incomplete penetrance. This is the first report of an exon 22 mutation in Milroy disease.


Assuntos
Linfedema/genética , Mutação/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Análise Mutacional de DNA , Éxons/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/química
14.
Genetica ; 127(1-3): 351-66, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16850239

RESUMO

Mariner family transposons are perhaps the most widespread transposable elements of eukaryotes. While we are beginning to understand the precise mechanism of transposition of these elements, the structure of their transposases are still poorly understood. We undertook an extensive mutagenesis of the N-terminal third of the transposase of the Himar1 mariner transposon to begin the process of determining the structure and evolution of mariner transposases. N and C-terminal deletion analyses localized the DNA binding domain of Himar1 transposase to the first 115 amino acids. Alanine scanning of 23 selected sites within this region uncovered mutations that not only affected DNA binding but DNA cleavage as well. The behavior of other mutations strongly suggested that the N-terminus is also involved in multimerization of the transposase on a single inverted terminal repeat and in paired ends complex formation which brings together the two ends of the transposon. Finally, two hyperactive mutations at conserved sites suggest that mariner transposases are under a pattern of stabilizing selection in nature with regard to how efficiently they mediate transposition, resulting in a population of "average" transposons.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Transposases/metabolismo , Transposases/fisiologia , Alanina/análise , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Desoxirribonuclease I/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli , Variação Genética , Modelos Biológicos , Dados de Sequência Molecular , Muscidae/genética , Muscidae/metabolismo , Muscidae/microbiologia , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transposases/genética , Transposases/isolamento & purificação
15.
Gene Expr Patterns ; 4(6): 611-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15465483

RESUMO

The molecular events involved in lymphatic development are poorly understood. Hence, the genes responsible for hereditary lymphedema are of great interest due to the potential for providing insights into the mechanisms of lymphatic development, the diagnosis, prevention and treatment of lymphedema, and lymphangiogenesis during tumor growth. Mutations in the FOXC2 transcription factor cause a major form of hereditary lymphedema, the lymphedema-distichiasis syndrome. We have conducted a study of Foxc2 expression during mouse development using immunohistochemistry, and examined its expression in lymphatics compared to its paralog Foxc1 and to Vegfr-3, Prox1 and other lymphatic and blood vascular proteins. We have found that Foxc2 is expressed in lymphatic primordia, jugular lymph sacs, lymphatic collectors and capillaries, as well as in podocytes, developing eyelids and other tissues associated with abnormalities in lymphedema-distichiasis syndrome.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Linfático/embriologia , Linfedema/patologia , Mutação , Fatores de Transcrição/biossíntese , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Forkhead , Heterozigoto , Proteínas de Homeodomínio/metabolismo , Homozigoto , Humanos , Imuno-Histoquímica , Vasos Linfáticos , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/metabolismo , Síndrome , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...