Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585925

RESUMO

Repetitive head impacts (RHI) sustained from contact sports are the largest risk factor for chronic traumatic encephalopathy (CTE). Currently, CTE can only be diagnosed after death and the multicellular cascade of events that trigger initial hyperphosphorylated tau (p-tau) deposition remain unclear. Further, the symptoms endorsed by young individuals with early disease are not fully explained by the extent of p-tau deposition, severely hampering development of therapeutic interventions. Here, we show that RHI exposure associates with a multicellular response in young individuals (<51 years old) prior to the onset of CTE p-tau pathology that correlates with number of years of RHI exposure. Leveraging single nucleus RNA sequencing of tissue from 8 control, 9 RHI-exposed, and 11 low stage CTE individuals, we identify SPP1+ inflammatory microglia, angiogenic and inflamed endothelial cell profiles, reactive astrocytes, and altered synaptic gene expression in excitatory and inhibitory neurons in all individuals with exposure to RHI. Surprisingly, we also observe a significant loss of cortical sulcus layer 2/3 neurons in contact sport athletes compared to controls independent of p-tau pathology. These results provide robust evidence that multiple years of RHI exposure is sufficient to induce lasting cellular alterations that may underlie p-tau deposition and help explain the early clinical symptoms observed in young former contact sport athletes. Furthermore, these data identify specific cellular responses to repetitive head impacts that may direct future identification of diagnostic and therapeutic strategies for CTE.

2.
JAMA Neurol ; 80(10): 1037-1050, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639244

RESUMO

Importance: Young contact sport athletes may be at risk for long-term neuropathologic disorders, including chronic traumatic encephalopathy (CTE). Objective: To characterize the neuropathologic and clinical symptoms of young brain donors who were contact sport athletes. Design, Setting, and Participants: This case series analyzes findings from 152 of 156 brain donors younger than 30 years identified through the Understanding Neurologic Injury and Traumatic Encephalopathy (UNITE) Brain Bank who donated their brains from February 1, 2008, to September 31, 2022. Neuropathologic evaluations, retrospective telephone clinical assessments, and online questionnaires with informants were performed blinded. Data analysis was conducted between August 2021 and June 2023. Exposures: Repetitive head impacts from contact sports. Main Outcomes and Measures: Gross and microscopic neuropathologic assessment, including diagnosis of CTE, based on defined diagnostic criteria; and informant-reported athletic history and informant-completed scales that assess cognitive symptoms, mood disturbances, and neurobehavioral dysregulation. Results: Among the 152 deceased contact sports participants (mean [SD] age, 22.97 [4.31] years; 141 [92.8%] male) included in the study, CTE was diagnosed in 63 (41.4%; median [IQR] age, 26 [24-27] years). Of the 63 brain donors diagnosed with CTE, 60 (95.2%) were diagnosed with mild CTE (stages I or II). Brain donors who had CTE were more likely to be older (mean difference, 3.92 years; 95% CI, 2.74-5.10 years) Of the 63 athletes with CTE, 45 (71.4%) were men who played amateur sports, including American football, ice hockey, soccer, rugby, and wrestling; 1 woman with CTE played collegiate soccer. For those who played football, duration of playing career was significantly longer in those with vs without CTE (mean difference, 2.81 years; 95% CI, 1.15-4.48 years). Athletes with CTE had more ventricular dilatation, cavum septum pellucidum, thalamic notching, and perivascular pigment-laden macrophages in the frontal white matter than those without CTE. Cognitive and neurobehavioral symptoms were frequent among all brain donors. Suicide was the most common cause of death, followed by unintentional overdose; there were no differences in cause of death or clinical symptoms based on CTE status. Conclusions and Relevance: This case series found that young brain donors exposed to repetitive head impacts were highly symptomatic regardless of CTE status, and the causes of symptoms in this sample are likely multifactorial. Future studies that include young brain donors unexposed to repetitive head impacts are needed to clarify the association among exposure, white matter and microvascular pathologic findings, CTE, and clinical symptoms.


Assuntos
Traumatismos em Atletas , Encefalopatia Traumática Crônica , Futebol , Feminino , Humanos , Masculino , Adulto Jovem , Adulto , Estudos Retrospectivos , Encefalopatia Traumática Crônica/diagnóstico , Encéfalo/patologia , Atletas , Traumatismos em Atletas/complicações , Traumatismos em Atletas/patologia
3.
Acta Neuropathol ; 145(4): 371-394, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759368

RESUMO

Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.


Assuntos
Encefalopatia Traumática Crônica , Futebol Americano , Tauopatias , Animais , Bovinos , Humanos , Masculino , Austrália , Encéfalo/patologia , Canadá , Encefalopatia Traumática Crônica/patologia , Proteínas tau/metabolismo
4.
J Neuropathol Exp Neurol ; 81(10): 773-780, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35903039

RESUMO

Millions of individuals are exposed to repetitive head impacts (RHI) each year through contact sports, military blast, and interpersonal violence. RHI is the major risk factor for developing chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy. Recent consensus criteria defined the pathognomonic lesion in CTE as perivascular, hyperphosphorylated tau (p-tau) in neuronal aggregates. Astroglial p-tau is an inconsistent supporting feature and not in itself diagnostic of CTE. This study quantitated the spatial and cellular distribution of p-tau pathology in postmortem dorsolateral frontal cortex of 150 individuals with CTE, from ages 21 to 80 years old, without comorbid pathology. p-Tau-immunoreactive cells were quantitated in the gray matter sulcus, crest, subpial region, and within pathognomonic CTE lesions. Significantly more neuronal p-tau than astrocytic p-tau was found across all cortical regions (p < 0.0001). Sulcal astrocytic p-tau was primarily (75%, p < 0.0001) localized to subpial regions as thorn-shaped astrocytes, a form of age-related tau astrogliopathy. Neuronal p-tau was significantly associated with age, years of RHI exposure, and CTE severity; astrocytic p-tau pathology was only significantly associated with age. These findings strongly support neuronal degeneration as a driving feature of CTE and will help inform future research and the development of fluid biomarkers for the detection of neuronal degeneration in CTE.


Assuntos
Encefalopatia Traumática Crônica , Tauopatias , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrócitos/patologia , Encefalopatia Traumática Crônica/patologia , Lobo Frontal/patologia , Humanos , Pessoa de Meia-Idade , Neurônios/patologia , Tauopatias/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...