Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 32(1): e12924, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418165

RESUMO

Trends in the elemental composition of fine particulate matter (PM2.5 ) collected from indoor, outdoor, and personal microenvironments were investigated using two metrics: ng/m3 and mg/kg. Pearson correlations that were positive using one metric commonly disappeared or flipped to become negative when the other metric was applied to the same dataset. For example, the correlation between Mo and S in the outdoor microenvironment was positive using ng/m3 (p < 0.05) but negative using mg/kg (p < 0.05). In general, elemental concentrations (mg/kg) within PM2.5 decreased significantly (p < 0.05) as PM2.5 concentrations (µg/m3 ) increased-a dilution effect that was observed in all microenvironments and seasons. An exception was S: in the outdoor microenvironment, the correlation between wt% S and PM2.5  flipped from negative in the winter (p < 0.01) to positive (p < 0.01) in the summer, whereas in the indoor microenvironment, this correlation was negative year-round (p < 0.05). Correlation analyses using mg/kg indicated that elemental associations may arise from Fe-Mn oxyhydroxide sorption processes that occur as particles age, with or without the presence of a common anthropogenic source. Application of mass-normalized concentration metrics (mg/kg or wt%), enabled by careful gravimetric analysis, revealed new evidence of the importance of indoor sources of elements in PM2.5 .


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Metais/análise , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
2.
J Pharm Biomed Anal ; 106: 204-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25459267

RESUMO

Workers in the pharmaceutical industry can potentially be exposed to airborne dusts and powders that can contain potent active pharmaceutical ingredients (API). Occupational hygienists and health and safety professionals need to assess and ultimately minimise such inhalation and dermal exposure risks. Containment of dusts at source is the first line of defence but the performance of such technologies needs to be verified, for which purpose the good practice guide: assessing the particulate containment performance of pharmaceutical equipment, produced by the International Society for Pharmaceutical Engineering (ISPE), is a widely used reference document. This guide recommends the use of surrogate powders that can be used to challenge the performance of such containment systems. Materials such as lactose and mannitol are recommended as their physical properties (adhesion, compactability, dustiness, flow characteristics and particle sizes) mimic those of API-containing materials typically handled. Furthermore they are safe materials to use, are available in high purity and can be procured at a reasonable cost. The aim of this work was to develop and validate a sensitive ion-chromatography based analytical procedure for the determination of surrogate powders collected on filter samples so as to meet analytical requirements set out in this ISPE guide.


Assuntos
Cromatografia/métodos , Glucose/análise , Manitol/análise , Sorbitol/análise , Indústria Farmacêutica/instrumentação , Indústria Farmacêutica/normas , Poeira/análise , Humanos , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Pós/análise , Local de Trabalho
3.
J Occup Environ Hyg ; 11(9): 604-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24499055

RESUMO

Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Laboratórios/normas , Metais Pesados/análise , Exposição Ocupacional/análise , Saúde Ocupacional , Soldagem , Monitoramento Ambiental/normas , Humanos , Padrões de Referência , Espectrofotometria Atômica/normas
4.
Ann Occup Hyg ; 52(4): 287-95, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18453528

RESUMO

This paper emphasizes the need for occupational hygiene professionals to require evidence of the quality of welding fume data from analytical laboratories. The measurement of metals in welding fume using atomic spectrometric techniques is a complex analysis often requiring specialist digestion procedures. The results from a trial programme testing the proficiency of laboratories in the Workplace Analysis Scheme for Proficiency (WASP) to measure potentially harmful metals in several different types of welding fume showed that most laboratories underestimated the mass of analyte on the filters. The average recovery was 70-80% of the target value and >20% of reported recoveries for some of the more difficult welding fume matrices were <50%. This level of under-reporting has significant implications for any health or hygiene studies of the exposure of welders to toxic metals for the types of fumes included in this study. Good laboratories' performance measuring spiked WASP filter samples containing soluble metal salts did not guarantee good performance when measuring the more complex welding fume trial filter samples. Consistent rather than erratic error predominated, suggesting that the main analytical factor contributing to the differences between the target values and results was the effectiveness of the sample preparation procedures used by participating laboratories. It is concluded that, with practice and regular participation in WASP, performance can improve over time.


Assuntos
Poluentes Ocupacionais do Ar/análise , Laboratórios , Saúde Ocupacional , Controle de Qualidade , Soldagem , Cromo/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA